Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Lớp 8 phân tích cái này thì hơi ngô khoai đấy cơ bằng đổi thành:
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\) thì còn dễ phân tích
Mạn phép sửa đề nhé:)
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x^2+4x\right)-\left(5x+20\right)\\\left(x^2-4x\right)+\left(5x-20\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-5\right)\\\left(x-4\right)\left(x+5\right)\end{cases}}\)
Còn nếu như giữ nguyên đề thì phân tích không ra đâu nhé:)
Nếu giữ nguyên thì ...
\(x^2+x+20\)
\(=\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{79}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{79}{4}\ge\frac{79}{4}>0\forall x\)
> 0 thì lấy đâu ra nghiệm :)
Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4.\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4.\left(4b+3a\right)^2\)
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(9a^2+24ab+16b^2\right)\)
\(=-a^4b^4\left[\left(3a\right)^2+2.3a.4b+\left(4b\right)^2\right]\)
\(=-a^4b^4\left(3a+4b\right)^2\)
Cái này làm sao mà phân tích được ;-; Tớ bày cách khác nhé :>
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20
= ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 )
= ( 3x - 3 )2 + ( y - 3 )2 + 2( z2 + 2z + 1 )
= ( 3x - 3 )2 + ( y - 3 )2 + 2( z + 1 )2
25(x-y)2-16(x+y)2
=[5(x-y)]2-[4(x+y)]2
=[5x-5y]2-[4x+4y]2
=(5x-5y+4x+4y)[(5x-5y)-(4x+4y)]
=(9x-y)(x-9y)
a) Đặt \(x^2=y\Rightarrow x^4+x^2-20=y^2+y-20=y^2-4y+5y-20=\left(y-4\right)\left(y+5\right)\)
Thay trở lại, ta có: \(x^4+x^2-20=\left(x^2-4\right)\left(x^2+5\right)=\left(x-2\right)\left(x+2\right)\left(x^2+5\right)\)
b) Đặt \(x-y=z\Rightarrow\left(x-y\right)^2+4x-4y-12=z^2+4z-12=z^2-2z+6z-12=\left(z-2\right)\left(z+6\right)\)
Thay trở lại ta có kết quả sau: \(\left(x-y-2\right)\left(x-y+6\right)\)
Bài làm:
Ta có: \(2x^2-3xy-2y^2\)
\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)
\(=2x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(2x+y\right)\left(x-2y\right)\)
Phân tích đa thức thành nhân tử
4x2−6x=2x(2x-3)
hãy k nếu bạn thấy đây là câu tl đúng :)
\(5a^2-5b^2-20a+20b\)
\(=5\left(a^2-b^2\right)-20\left(a-b\right)\)
\(=5\left(a-b\right)\left(a+b\right)-20\left(a-b\right)\)
\(=\left[5\left(a+b\right)-20\right]\left(a-b\right)\)
\(=\left(5a+5b-20\right)\left(a-b\right)\)
\(5a^2-5b^2-20a+20=-5.\left(b-a+2\right).\left(b+a-2\right)\)