Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ( x - 5 )( y + 3 ) = -9
Vì x; y ϵ Z nên x - 5; y + 3 ϵ Z
Vậy x - 5; y + 3 ϵ Ư( -9 ) = { -1; 1; -3; 3; -9; 9 }
Lập bảng giá trị
x - 5 | 1 | -1 | 3 | -3 | 9 | -9 |
x | 6 | 4 | 8 | 2 | 14 | -4 |
y + 3 | -9 | 9 | -3 | 3 | -1 | 1 |
y | -12 | 6 | -6 | 0 | -4 | -2 |
Vậy các cặp số nguyên ( x; y ) cần tìm là ( -9; -12 ) ; ( 9; 6 ) ; ( -3; -6 ) ; ( 3; 0 ) ; ( -1; -4 ) ; ( 1; -2 )
(x-5)(y+3)=-1x9=-3x3=-9x1(x,y ϵ z)
=>
x-5 | -1 | -3 | -9 |
y+3 | 9 | 3 | 1 |
x | 4 | 2 | -4 |
y | 6 | 0 | -2 |
Vậy (x,y)=(4,6)=(2,0)=(-4,-2)
a) A = (x - 1)^2 + |2y - 1| + 5.
Ta có: (x - 1)^2 là số chính phương => (x - 1)^2 >= 0 với mọi x; |2y - 1| >= 0 với mọi y.
=> A = (x - 1)^2 + |2y - 1| + 5 >= 0 + 0 + 5 = 5. => A >= 5
Vậy GTNN của A là 5. Dấu "=" xảy ra <=> x = 1; y = 1/2.
b) B = x + |x - 20| + 80.
Ta có: B = x + |x - 20| + 80 = x + |20 - x| + 80 >= x + (20 - x) + 80 = 20 + 80 = 100. => B >= 100.
Vậy GTNN của B là 100. Dấu "=" xảy ra <=> x = 0 hoặc x = 10 hoặc x = 20.
Nếu như đề bài bảo tìm GTNN của biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu, và giá trị đó sẽ là GTNN của biểu thức. Còn nếu như đề bài bảo tìm GTLN của biểu thức thì bạn làm ngược lại.
a. Vì \(\left(x-1\right)^2\ge0\forall x\); \(\left|2y-1\right|\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y-1\right|\ge0\forall x;y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y-1\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left|2y-1\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\2y-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}}\)
Vậy Amin = 5 <=> x = 1 ; y = 1/2
b.
+) Nếu \(x\ge20\)
\(\Rightarrow B=x+\left|x-20\right|+80=x+x-20+80=2x+60\ge100\)
Dấu "=" xảy ra \(\Leftrightarrow2x=40\Leftrightarrow x=20\left(tm\right)\)
+) Nếu \(x< 20\)
\(\Rightarrow B=x+\left|x-20\right|+80=x+\left[-\left(x-20\right)\right]+80\)
\(\Rightarrow B=x-x+20+80=100\)
Vậy Bmin = 100 \(\Leftrightarrow x\le20\)
Câu 1 :
\(\dfrac{-25}{37}\&\dfrac{-20}{31}\)
Ta thấy \(\dfrac{-25}{37}< \dfrac{-20}{37}\)
mà \(\dfrac{-20}{37}< \dfrac{-20}{31}\)
\(\Rightarrow\dfrac{-25}{37}< \dfrac{-20}{31}\)
Câu 2 :
\(\dfrac{2}{3}\&\dfrac{5}{7}\)
\(\dfrac{2}{3}:\dfrac{5}{7}=\dfrac{2}{3}.\dfrac{7}{5}=\dfrac{14}{15}< 1\)
\(\Rightarrow\dfrac{5}{7}>\dfrac{2}{3}\) Câu 3 : \(\dfrac{8}{13}\&\dfrac{5}{7}\)Ta thấy \(\dfrac{8}{13}:\dfrac{5}{7}=\dfrac{8}{13}.\dfrac{7}{5}=\dfrac{56}{65}< 1\)
\(\Rightarrow\dfrac{8}{13}< \dfrac{5}{7}\)a) \(\frac{45^{10}.5^{20}}{75^{15}}\)
=
\(\frac{\left(5.9\right)^{10}.5^{20}}{\left(5.15\right)^{15}}\)
= \(\frac{5^{10}.9^{10}.5^{20}}{5^{15}.15^{15}}\)
= \(\frac{5^{10}.3^{20}.5^{20}}{5^{15}.15^{15}}\)
= \(\frac{5^{10}.15^{20}}{5^{15}.15^{15}}\)
= \(\frac{15^5}{5^5}\)
= \(\frac{3^5.5^5}{5^5}\)
= \(3^5\)
b) \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
= \(\frac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)
= \(\frac{2^5}{0,4}\)
= \(2^5\) : 0,4
(=) 32 : \(\frac{2}{5}\)
= 90
c) \(\frac{2^{15}.9^4}{6^6.8^3}\)
= \(\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)
= \(\frac{2^{15}.3^8}{2^6.3^6.2^9}\)
= \(3^2\)