
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1 : ta tính A x 3(h = 3)
A x 3 = 3 x \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)
=\(\frac{15}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)
2 : A x 3 - A = \(\frac{15}{2}+\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}-\frac{5}{2}-\frac{5}{6}-\frac{5}{18}-\frac{5}{54}-\frac{5}{162}-\frac{5}{486}\)
A x (3-1)=A x2
A x 2= \(\frac{15}{2}-\frac{5}{486}=\frac{1820}{243}\)
A = \(\frac{910}{243}\)
k cho nha



Đặt tổng trên là A
\(3xA=\dfrac{15}{2}+\dfrac{5}{2}+\dfrac{5}{6}+\dfrac{5}{18}+\dfrac{5}{54}+\dfrac{5}{162}\)
\(2xA=3xA-A=\dfrac{15}{2}-\dfrac{5}{468}\)
Từ đó suy ra A


Gọi giá trị của biểu thức trên là A. Ta có:
\(A=\dfrac{5}{2}+\dfrac{5}{6}+\dfrac{5}{18}+\dfrac{5}{54}+\dfrac{5}{162}\)
\(3A=\dfrac{15}{2}+\dfrac{5}{2}+\dfrac{5}{6}+\dfrac{5}{18}+\dfrac{5}{54}\)
\(3A-A=\left(\dfrac{15}{2}+\dfrac{5}{2}+\dfrac{5}{6}+\dfrac{5}{18}+\dfrac{5}{54}\right)-\left(\dfrac{5}{2}+\dfrac{5}{6}+\dfrac{5}{18}+\dfrac{5}{54}+\dfrac{5}{162}\right)\)
\(2A=\dfrac{15}{2}-\dfrac{5}{162}\)
\(A=\left(\dfrac{15}{2}-\dfrac{5}{162}\right)\div2=\dfrac{605}{81}\div2=\dfrac{605}{162}\)
= 10/3 + 5/18 + 5/54 + 5/162
= 65/18 + 5/54 + 5/162
= 100/27 + 5/162
= 605/162

Đặt \(A=\frac52+\frac56+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)
\(3A=\frac{15}{2}+\frac52+\frac56+\frac{5}{18}+\frac{5}{54}\)
\(3A-A=\left(\frac{15}{2}+\frac52+\frac56+\frac{5}{18}+\frac{5}{54}\right)-\left(\frac52+\frac56+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)\)
\(2A=\frac{15}{2}-\frac{5}{162}=\frac{605}{81}\)
\(\Rightarrow A=\frac{605}{81}:2=\frac{605}{162}\)
Đặt tổng trên là A
\(3A=\) \(3\times\left(\frac52+\frac56+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)\)
\(3A=\frac{15}{2}\) \(+\frac56+\) \(\frac{5}{18}+\frac{5}{54}\)
\(3A-A=\) \(\frac{15}{2}\) \(+\frac56+\frac{5}{18}+\frac{5}{54}\) \(-\frac52-\frac56-\frac{5}{18}-\frac{5}{54}-\frac{5}{162}\)
\(2A=\frac52-\frac{5}{162}\)
\(2A=\frac{200}{81}\)
\(A=\frac{200}{81}:2\)
\(A=\frac{100}{81}\)