Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2\left|4,5x-9\right|-18\)
Vì \(\left|4,5x-9\right|\ge0\forall x\)
=> \(2\left|4,5x-9\right|-18\ge-18\)
Dấu " = " xảy ra khi và chỉ khi |4,5x - 9| = 0 => 4,5x - 9 = 0 => 4,5x = 9 => x = 2
Vậy \(B_{min}=-18\)khi x = 2
\(C=\left(2x+1\right)^2-1990\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)
=> \(\left(2x+1\right)^2-1990\ge-1990\forall x\)
Dấu " = " xảy ra khi và chỉ khi (2x + 1)2 = 0 => 2x + 1 = 0 => x = -1/2
Vậy \(C_{min}=-1990\)khi x = -1/2
\(D=\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\)
=> \(\left(x+1\right)^2+\left|y+5\right|\ge0\forall x\)
=> \(\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\ge-\frac{3}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left|y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
Vậy \(D_{min}=-\frac{3}{2}\)khi \(\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
sorry anh nha
em ko lm đc
tại em mới lớp 6
thông cảm
chúc anh HT
Lời giải:
$|x-2|+|3-2x|=2x+1$
Nếu $x\geq 2$ thì:
$x-2+2x-3=2x+1$
$\Rightarrow 3x-5=2x+1$
$\Rightarrow x=6$ (tm)
Nếu $\frac{3}{2}\leq x< 2$ thì:
$2-x+2x-3=2x+1$
$\Rightarrow x-1=2x+1$
$\Rightarrow x=-2$ (không tm)
Nếu $x< \frac{3}{2}$ thì:
$2-x+3-2x=2x+1$
$\Rightarrow 5-3x=2x+1$
$\Rightarrow 4=5x$
$\Rightarrow x=\frac{4}{5}$ (tm)
Bạn lưu ý lần sau viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề và hỗ trợ nhanh hơn nhé.