Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=7,6\)
b) Bạn làm tương tự.
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{38}{5}\)
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
= 1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
= 9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
= 9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
= 9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
= 9 – (1 – 1/10) = 9 – 9/10 = 81/10
= (1-1/2)+(1-1/6)+(1-1/12)+(1-1/20)+(1-1/30)+(1-1/42)+(1-1/56)+(1-1/72)+(1-1/90)
= 1x 9 - ( 1/2 + 1/6 +...+1/90)
= 9 - { (1-1/2) + (1-1/6) +...+(1-1/90)
= 9 - { 1 - 1/10}
= 9 - 9/10
= 8,1
\(I=\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+...+\frac{5}{90}\)( viết tắt )
\(I=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{9.10}\)
\(I=5\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(I=5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(I=5\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(I=5\times\frac{2}{5}\)
\(I=2\)
Vậy \(I=2\)
Tk nha bn ~~
\(I=\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+\frac{5}{42}+\frac{5}{56}+\frac{5}{72}+\frac{5}{90}\)
\(I=\frac{5}{2\cdot3}+\frac{5}{3\cdot4}+\frac{5}{4\cdot5}+\frac{5}{5\cdot6}+\frac{5}{6\cdot7}+\frac{5}{7\cdot8}+\frac{5}{8\cdot9}+\frac{5}{9\cdot10}\)
\(I=5\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)
Theo tính chất của toán HSG lớp 6, ta được
\(I=5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(I=5\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(I=5\left(\frac{5}{10}-\frac{1}{10}\right)\)
\(I=5\cdot\frac{4}{10}=5\cdot\frac{2}{5}=\frac{10}{5}=2\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+..+\left(1-\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
Đặt biểu thức trong ngoặc đơn là B
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(B=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{10-9}{9.10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(A=9-B=9-\frac{9}{10}=8\frac{1}{10}\)
\(A=\dfrac{1}{2}+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{71}{72}+\dfrac{89}{90}\) (sửa đề)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+\left(1-\dfrac{1}{30}\right)+\left(1-\dfrac{1}{42}\right)+\left(1-\dfrac{1}{56}\right)+\left(1-\dfrac{1}{72}\right)+\left(1-\dfrac{1}{90}\right)\)
\(=\left(1+1+1...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=8-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\) ( có 8 số hạng 1)
\(=8-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=8-\left(1-\dfrac{1}{10}\right)\)
\(=8-\dfrac{9}{10}\)
\(=\dfrac{80}{10}-\dfrac{9}{10}=\dfrac{71}{10}\)
A=1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
=1−1/2+1−1/6+1−1/12+1−1/20+1−1/30+1−1/42+1−1/56+1−1/72+1−1/90
=9−(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9−(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10)
=9-(1-1/2+1/2-1/3+.....+1/9-1/10)
=9−(1−1/10)
=9−1+1/10=8+1/10=81/10
\(9-A=1-\frac{1}{2}+1-\frac{5}{6}+1-\frac{11}{12}+1-\frac{19}{20}+...+1-\frac{89}{90}\)
\(\Leftrightarrow9-A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Leftrightarrow9-A=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{10-9}{9\cdot10}\)
\(\Leftrightarrow9-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\Leftrightarrow A=9-\frac{9}{10}=\frac{81}{10}\)
- 5 / 2 - 5 / 30 - 5 / 42 - 5/56 - 5/72 - 5/90 = ?
Trả lời :
- 5 / 2 - 5 / 30 - 5 / 42 - 5/56 - 5/72 - 5/90 = - 3
-5/2 - 5/30 - 5/42 - 5/56 - 5/72 - 5/90
=-3