Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\dfrac{7}{13}+\dfrac{7}{14}-\dfrac{7}{15}}{\dfrac{8}{13}+\dfrac{8}{14}-\dfrac{8}{15}}-\dfrac{\dfrac{5}{11}-\dfrac{5}{13}+\dfrac{5}{15}}{\dfrac{8}{11}-\dfrac{8}{13}+\dfrac{8}{15}}\)
\(=\dfrac{7\left(\dfrac{1}{13}+\dfrac{1}{14}-\dfrac{1}{15}\right)}{8\left(\dfrac{1}{13}+\dfrac{1}{14}-\dfrac{1}{15}\right)}-\dfrac{5\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{15}\right)}{8\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{15}\right)}\)
\(=\dfrac{7}{8}-\dfrac{5}{8}\)
\(=\dfrac{2}{8}=\dfrac{1}{4}\)
xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không
S = 1/2 + 1/3 + 1/4 +...... + 1/ n
=> 1/ S = 2 + 3 + 4 +......+n
=> 1 = ( 2+3+4 +......+ n)S
=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n)
vì n thuộc n nên ( 2+3+4+...+ n) sẽ là số nguyên
=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên
Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1
có 2 Th để dấu bằng xảy ra là
2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1
Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n
Th1 không thể xảy ra vì 2=3+4=...+n khác 1
nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số
Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh
a) Xét \(\Delta ABC\) cân tại A:
AH là đường cao (gt).
\(\Rightarrow\) AH là đường phân giác \(\widehat{BAC}\) (T/c tam giác cân).
\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)
b) Xét \(\Delta ABC\) cân tại A:
AH là đường cao (gt).
\(\Rightarrow\) AH là đường trung tuyến (T/c tam giác cân).
\(\Rightarrow\) H là trung điểm của BC.
Xét \(\Delta ABC:\)
H là trung điểm của BC (cmt).
\(HI//AB\left(gt\right).\)
\(\Rightarrow\) I là trung điểm của AC.
Xét \(\Delta ABC:\)
I là trung điểm của AC (cmt).
H là trung điểm của BC (cmt).
\(\Rightarrow\) IH là đường trung bình.
\(\Rightarrow\) \(IH=\dfrac{1}{2}AB\) (T/c đường trung bình).
Mà \(AB=AC(\Delta ABC\) cân tại A\().\)
\(IC=\dfrac{1}{2}AC\) (I là trung điểm của AC).
\(\Rightarrow IH=IC.\)
\(\Rightarrow\Delta IHC\) cân tại I.
Gọi số sách 3 tủ lần lượt là a,b,c
Trước và sau khi chuyển thì tổng số sách 3 tủ vẫn là 2250 cuốn.
Theo đề bài, ta có:
a+b+c=2250
Sau khi chuyển thì: \(\frac{a}{16}=\frac{b}{15}=\frac{c}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{16}=\frac{b}{15}=\frac{c}{14}=\frac{a+b+c}{16+15+14}=\frac{2250}{45}=50\)
Suy ra số sách trước khi chuyển:\(\hept{\begin{cases}a=50\cdot16=800+100=900\\b=50\cdot15=750\\c=50\cdot14-100=600\end{cases}}\)(quyển)
Vậy..
a) A = 1 + 2 + 22 + 23 + ... + 22012
2A = 2 + 22 + 23 + 24 + ... + 22013
2A - A = (2 + 22 + 23 + 24 + ... + 22013) - (1 + 2 + 22 + 23 + ... + 22012)
A = 22013 - 1
b) A = 22013 - 1
A = 22012.2 - 1
A = (24)503.2 - 1
A = (...6)503.2 - 1
A = (...6).2 - 1
A = (...2) - 1
A = (...1)
c) A = 1 + 2 + 22 + 23 + ... + 22012 (có 2013 số; 2013 chia hết cho 3)
A = (1 + 2 + 22) + (23 + 24 + 25) + ... + (22010 + 22011 + 22012)
A = 7 + 23.(1 + 2 + 22) + ... + 22010.(1 + 2 + 22)
A = 7 + 23.7 + ... + 22010.7
\(A=7.\left(1+2^3+...+7^{2010}\right)⋮7\left(đpcm\right)\)
\(5^{15}+25^7+5^{13}=5^{15}+\left(5^2\right)^7+5^{13}\)
\(=5^{15}+5^{14}+5^{13}=5^{11}\left(5^4+5^3+5^2\right)\)
\(=5^{11}.\left(625+125+25\right)=5^{11}.775⋮775\)