Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
Bài 2
Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)
\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)
\(\Rightarrow a=1\)
\(\Rightarrow b+ac=0\)
\(\Rightarrow bc+a=-3\)
\(\Rightarrow b=-2\)
Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được
\(\Leftrightarrow-2+c=0\Rightarrow c=2\)
Vậy \(a=1;b=-2;c=2\)
Bài 3
Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)
\(\Rightarrow b=2x-1\)
Bài 4 (cũng làm tương tự như bài 3 nhé )
Bài 5(bài nãy dễ nên bạn tự làm đi nhé)
Bài 6
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)
Bài 7
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Rightarrow a-b=0\Rightarrow a=b\)
\(\Rightarrow b-c=0\Rightarrow b=c\)
\(\Rightarrow a-c=0\Rightarrow a=c\)
Vậy \(a=b=c\)
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
a) Đặt t = x2
bthuc <=> t2 - 7t + 16
Từ đây ta không thể phân tích được :)
b) x3 - 2x2 + 5x - 4
= x3 - x2 - x2 + x + 4x - 4
= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - x + 4 )
c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )
d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )
e) 6x3 + x2 + x + 1
= 6x3 + 3x2 - 2x2 - x + 2x + 1
= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 3x2 - x + 1 )
f) 4x3 + 6x2 + 4x + 1
= 4x3 + 2x2 + 4x2 + 2x + 2x + 1
= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 2x2 + 2x + 1 )
x2-7x+8=x2-7x-7-1=(x2-1)-(7x+7)=(x-1)(x+1)-7(x+1)=(x-8)(x+1)
3:
a)
*Đa thức \(A=x\left(2x-3\right)\)
Ta có: \(A=x\left(2x-3\right)\)
\(=2x^2-3x\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left[\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}\right]\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow\)\(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy: GTNN của đa thức \(A=x\left(2x-3\right)\) là \(\frac{-9}{2}\) khi \(x=\frac{3}{2}\)
*Đa thức \(B=x\left(x-3\right)\)
Ta có: \(B=x\left(x-3\right)\)
\(=x^2-3x\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\)
\(=\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy: GTNN của đa thức \(B=x\left(x-3\right)\) là \(\frac{-9}{4}\) khi \(x=\frac{3}{2}\)
b)
* Đa thức \(C=-x^2+13x+2012\)
Ta có: \(C=-x^2+13x+2012\)
\(=-\left(x^2-13x-2012\right)\)
\(=-\left(x^2-2\cdot x\cdot\frac{13}{2}+\frac{169}{4}-\frac{8217}{4}\right)\)
\(=-\left[\left(x^2-2\cdot x\cdot\frac{13}{2}+\frac{169}{4}\right)-\frac{8217}{4}\right]\)
\(=-\left[\left(x-\frac{13}{2}\right)^2-\frac{8217}{4}\right]\)
\(=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)
Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-\frac{13}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-\frac{13}{2}\right)^2=0\Leftrightarrow\left(x-\frac{13}{2}\right)^2=0\Leftrightarrow x=\frac{13}{2}\)
Vậy: GTLN của đa thức \(C=-x^2+13x+2012\) là \(\frac{8217}{4}\) khi \(x=\frac{13}{2}\)
*Đa thức \(D=-x^2+2x-3\)
Ta có: \(D=-x^2+2x-3\)
\(=-\left(x^2-2x+3\right)\)
\(=-\left(x^2-2x+1+2\right)\)
\(=-\left[\left(x^2-2x+1\right)+2\right]\)
\(=-\left[\left(x-1\right)^2+2\right]\)
\(=-\left(x-1\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của đa thức \(D=-x^2+2x-3\) là -2 khi x=1