Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{6^{100}\cdot18^{100}\cdot49^{50}}{14^{100}\cdot27^{100}\cdot4^{50}}\)
\(=\dfrac{3^{100}\cdot2^{100}\cdot\left(3^2\right)^{100}\cdot2^{100}\cdot\left(7^2\right)^{60}}{7^{100}\cdot2^{100}\cdot\left(3^3\right)^{100}\cdot\left(2^2\right)^{50}}\)
\(=\dfrac{3^{100}\cdot3^{200}\cdot2^{100}\cdot7^{120}}{7^{100}\cdot3^{300}\cdot2^{100}}\)
\(=\dfrac{3^{200}\cdot7^{20}}{3^{200}}\)
\(=7^{20}\)
\(A=\dfrac{100}{1\cdot2}+\dfrac{100}{2\cdot3}+\dfrac{100}{3\cdot4}+...+\dfrac{100}{99\cdot100}\)
\(A=100\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(A=100\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=100\cdot\left(1-\dfrac{1}{100}\right)\)
\(A=100\cdot\dfrac{99}{100}\)
A=99
a) 50 <2^n <100
50 < 2^6
2^6 < 100
=> n = 6 duy nhất
b)50 < 7^n < 2500
7^2 < 50 < 7^3
7^4 < 50^2 = 2500
n = 3 và 4
TL:
50 * 100 = 5000
~HT~
50 * 100 = 5000