Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-4\right)-\left(x^2-8\right)=0\)
\(\Leftrightarrow x^2-4x-x^2+8=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
b) \(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
\(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-2x+x-2\right)=0\)
\(\Leftrightarrow3x^2-3x+2x-2-3x^2+6x-3x+6=0\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\)
c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\)
\(\Leftrightarrow x=-1\)
a) x(x - 4 ) - ( x^2 - 8 ) = 0
=>x2-4x-x2+8=0
=>8-4x=0
=>4x=8
=>x=2
b) ( 3x + 2 )( x - 1 ) - 3( x + 1 )( x - 2 ) = 4
=>3x2-x-2-3x2+3x+6=4
=>2x+4=4
=>2x=0
=>x=0
c) x( x + 5 )( x - 5 ) - ( x + 2 )( x^2 - 2x + 4 ) = 17
=>x(x2-25)-(x3+8)=17
=>x3-25x-x3-8=17
=>-25x-8=17
=>-25x=25
=>x=-1
\(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\)
\(\Leftrightarrow x=25:-25\)
\(\Leftrightarrow x=-1\)
c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\)
\(\Leftrightarrow x=-1\)
pt <=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)
Đặt: \(t=x-\frac{5+2}{2}=x-\frac{7}{2}\)
pt trở thành: \(\left(t+\frac{7}{2}-5\right)^4+\left(x+\frac{7}{2}-2\right)^4=17\)
<=> \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\) ( Nếu em nhớ hằng đẳng thức (a+b)^4 thì có thể làm tắt rồi rút gọn )
<=> \(\left[\left(t-\frac{3}{2}\right)^2+\left(t+\frac{3}{2}\right)^2\right]^2-2\left(t-\frac{3}{2}\right)^2\left(t+\frac{3}{2}\right)^2=17\)
<=> \(\left(2t^2+\frac{9}{2}\right)^2-2\left(t^2-\frac{9}{4}\right)^2=17\)
<=> \(2t^4+27t^2-\frac{55}{8}=0\)
<=> \(\left(t^4+2.t^2.\frac{27}{4}+\frac{27^2}{4^2}\right)-\frac{27^2}{4^2}-\frac{55}{16}=0\)
<=> \(\left(t^2+\frac{27}{4}\right)^2=49\)
<=> \(\orbr{\begin{cases}t^2=\frac{1}{4}\\t^2=-\frac{55}{4}\left(loai\right)\end{cases}}\Leftrightarrow t=\pm\frac{1}{2}\)
Với t = 1/2 em thay vào tính x
t =-1/2 ....
a. \(x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(x^3-25x-\left(x^3+8\right)=17\)
\(x^3-25x-x^3-8=17\)
\(-25x=25\)
\(x=-1\)
c. \(6x^2-\left(6x^2-4x+15x-10\right)=7\)
\(6x^2-6x^2-11x+10=7\)
\(-11x=-3\)
\(x=\frac{3}{11}\)
a) \(pt< =>x^3-3.x^2.3+3.x.9-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=4\)
\(< =>x^3-27-x^3+27-9x^2+27x+9x^2+18x+9=4\)
\(< =>45x=4-9=-5< =>x=-\frac{5}{45}=-\frac{1}{9}\)
b) \(pt< =>x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(< =>x^3-25x-x^3-8=17< =>25x=-8-17=-25< =>x=-1\)
a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4
<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4
<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4
<=> 45x + 9 = 4
<=> 45x = -5
<=> x = -5/45 = -1/9
b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17
<=> x( x2 - 25 ) - ( x3 + 23 ) = 17
<=> x3 - 25x - x3 - 8 = 17
<=> -25x - 8 = 17
<=> -25x = 25
<=> x = -1