\(\frac{1}{2010}\)) x (1-\(\frac{2}{2010}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(1-\frac{2011}{2010}\right)\)

\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x....x\left(1-\frac{2010}{2010}\right)x\left(1-\frac{2011}{2010}\right)\)

\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(0\right)x\left(1-\frac{2011}{2010}\right)\)

\(B=0\)

7 tháng 5 2017

Phúc 6A phải k

22 tháng 4 2017

A=(1-1/2010).(1-1/2010).....(1-2011/2010)

A=1*(1/2010-2/2010-3/2010-...-2011/2010)

A=1/2010-2/2010-3/2010-...-2011/2010

rồi bạn bấm tiếp theo nha

30 tháng 4 2017

Ta có:\(1-\frac{2010}{2010}=1-1=0\)

 Tích\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)....\left(1-\frac{2011}{2010}\right)\)có chứa thừa số \(1-\frac{2010}{2010}=0\)

Vậy tích\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2011}{2010}\right)=0\)

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010

13 tháng 3 2019

mk nghĩ đây là toán 8.

\(Pt\Leftrightarrow\left(x-2010\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{72}\right)=\frac{16}{9}\Leftrightarrow\left(x-2010\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{8.9}\right)=\frac{16}{9}\Leftrightarrow\left(x-2010\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....-\frac{1}{9}\right)=\frac{16}{9}\Leftrightarrow\left(x-2010\right).\frac{2}{9}=\frac{16}{9}\Leftrightarrow x-2010=8\Leftrightarrow x=2018.\text{ Vậy: x=2018}\)

9 tháng 3 2018

\(b)\)  Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Àk mình còn thiếu một điều kiện nữa xin lỗi nhé : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Bạn thêm vào nhé 

mik fan Phong ca nè bạn