Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)64:2mũ5×30×4
= 64 : 32 x 30 x 4
= 240
b)3 mũ 2× 5 - 2 mũ 2×7+2 mũ 0 × 5
= 9 x 5 - 4 x 7 + 1 x 5
= 45 - 28 + 5
= 22
c)2 mũ 3-5 mũ 3÷5 mũ 2 + 12×2 mũ 2
= 8 - 125 : 25 + 12 x 4
= 8 - 5 + 48
= 51
d)2[(7-3 mũ 3÷3 mũ 2) chia 2 mũ 2 + 99]-100
= 2[( 7 - 27 : 9) : 4 + 99] - 100
= 2[4 : 4 + 99] - 100
= 2. 100 - 100
= 200 - 100
= 100
e)4[(3 + 3^7:3^4)chia 10 + 97]-300
= 4[( 3 + 3^3) : 10 + 97] - 300
= 4[ 30 : 10 + 97 ] - 300
= 4. 100 - 300
= 400 - 300
= 100
f)2^2 x 5 [(5 mũ 2 cộng 2 mũ 3) chia 11 - 2] - 3^2 x 2
= 4 x 5 [ (25 + 8 ) : 11 - 2] - 9 x 2
= 20 [ 33 : 11 - 2] - 18
= 20. 1 - 18
= 20 - 18
= 2
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
a. \(12^2.3^2.2^3=2^4.3^2.3^2.2^3=2^7.3^4\)
b. \(8^3.3^2.6^3=2^9.3^2.2^3.3^3=2^{12}.3^5\)
c. \(5^{32}.5^2=5^{34}\)
d. \(100^6.2^3=\left(2^2.5^2\right)^6.2^3=2^8.5^8.2^3=2^{11}.5^8\)
e. \(100^2:10^2:5^2=\left(10.5.2\right)^2:10^2:5^2=2^2\)
f. \(121^3-11^2=11^6-11^2=11^2\left(11^4-1\right)\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
B=[(45.79+45.21)]:90-5^2]:5+2^3 B=[(45.79+45.21):90-25]:5+8 B=[(45.(79+21):65]:13 B=[(45.100):65]:13 B=[4500:65]:13 B=4500:65:13
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23