K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

Ta có: \(\widehat{BAH}< \widehat{CAH}\)

nên \(\widehat{C}< \widehat{B}\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

mà cạnh đối diện với góc C là cạnh AB

và cạnh đối diện với góc B là cạnh AC

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

11 tháng 4 2020

Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC.Biết góc BAH < góc CAH, hãy chứng minh HB < HC.

Bài làm

a) Xét tam giác ABC vuông tại A có:

\(\widehat{B}+\widehat{ACH}=90^0\)                    (1)

 Xét tam giác AHB vuông ở H có:

\(\widehat{B}+\widehat{ABH}=90^0\)                  (2)

Từ (1) và (2) => \(\widehat{ABH}=\widehat{ACH}\)

b) Xét tam giác ABH có:

\(\widehat{BAH}\)là góc đối diện của cạnh HB.

Xét tam giác ACH có: 

\(\widehat{CAH}\)là góc đối diện của cạnh HC.

Mà \(\widehat{BAH}>\widehat{CAH}\) ( gt )

=> HB > HC ( Quan hệ giữ cạnh và góc đối diện (

# Học tốt #

2 tháng 1 2022

a. Xét tam giác BID và tam giác CID có :

AI=ID ( giả thiết )

BI=CI ( vì I là trung điểm của BC )

góc BID=góc CIA ( đối đỉnh )

Nên tam giác BID= tam giác CIA ( c- g- c)

10 tháng 7 2019

#)Giải :

Bài 1 :

Ta có :

\(\widehat{ABH}+\widehat{BAH}=90^o\)

\(\widehat{ACH}+\widehat{HAC}=90^o\)

\(\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{ABH}>\widehat{ACH}\)

\(\Rightarrow AB< AC\)

Mà HB là hình chiếu của AB trên BC, HC là hình chiếu của AC trên BC

\(\Rightarrow HB< HC\)

`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC,`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `BAH` và Tam giác `CAH` có:

`AB = AC (CMT)`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`HB = HC ( H` là trung điểm của `BC)`

`=> \text {Tam giác BAH = Tam giác CAH (c-g-c)}`

`->`\(\widehat{BAH}=\widehat{CAH} (\text {2 góc tương ứng})\)

`b,` Xét Tam giác `HEA` và Tam giác `BDA` có:

`AH` chung

\(\widehat{EAH}=\widehat{DAH} (a)\)

\(\widehat{HEA}=\widehat{HDA}=90^0\)

`=> \text {Tam giác HEA = Tam giác BDA (ch-gn)}`

`-> HE = HD (\text {2 cạnh tương ứng})`

`\text {Xét Tam giác HDE: HD = HE} -> \text {Tam giác HDE cân tại H}`

loading...