Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3^7\cdot27^5\cdot81^3=3^7\cdot3^{15}\cdot3^{12}=3^{34}\)
b: \(36^5:18^5=\left(\dfrac{36}{18}\right)^5=2^5=32\)
c: \(24\cdot5^2+5^2\cdot5^3=24\cdot25+25\cdot125=25\cdot149=3725\)
d: \(\dfrac{125^4}{5^8}=\dfrac{5^{12}}{5^8}=5^4=625\)
a) \(3^7.27^5.81^3\)
\(=3^7.\left(3^3\right)^5.\left(3^4\right)^3\)
\(=3^7.3^{15}.3^{12}\)
\(=3^{34}\)
b) \(36^5:18^5\)
\(=\left(\dfrac{36}{18}\right)^5\)
\(=2^5\)
c) \(24.5^5+5^2.5^3\)
\(=24.5^5+5^5\)
\(=5^5.\left(24+1\right)\)
\(=5^5.25\)
\(=5^5.5^2=5^7\)
d) \(125^4:5^8\)
\(=\left(5^3\right)^4:5^8\)
\(=5^{12}:5^8\)
\(=5^4\)
a: =>n*5^3=5^7
=>n=5^4=625
c: \(\Leftrightarrow2\cdot3^n=3^4+2^5-5=81+32-5=108\)
=>3^n=54
=>\(n\in\varnothing\)
d: =>5^n=25
=>n=2
f: =>3n+1=4
=>3n=3
=>n=1
\(\left(5^3+5^4+125^2\right):5^3\)
\(=\left[5^3+5^4+\left(5^3\right)^2\right]:5^3\)
\(=\left(5^3+5^4+5^6\right):5^3\)
\(=5^3\times\left(1+5+5^3\right):5^3\)
\(=1+5+5^3\)
\(=131\)
\(\left(5^3+5^4+125^2\right):5^3=\left(5^3+5^4+5^6\right):5^3\)
\(=5^3\left(1+5+5^3\right):5^3=1+5+125\)
\(=131\)