K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

(5-2x)^2-16=0

(5-2x)^2=16

=>(5-2x)^2=4 hoặc=-4

=>5-2x=4 hoặc 5-2x=-4

=>x=1/2 hoặc x=9/2

Vậy x thuộc {1/2;9/2}

8 tháng 10 2021

Cách 2:

(5-2x)^2-16=0

(5-2x-4).(5-2x+4)=0

rồi làm như thường

28 tháng 3 2020

a. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+7-1-2.2=8\ne0\)

\(\Rightarrow x_0=2\) không phải là nghiệm của pt

b. Thay \(x_0=-2\) vào phương trình, ta được:

\(\left(-2\right)^2-3.\left(-2\right)-10=0\)

\(\Rightarrow x_0=-2\) là nghiệm của pt

c. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+4-2.2+2=0\)

\(\Rightarrow x_0=2\) là nghiệm của pt

d. Thay \(x_0=-1\) vào phương trình, ta được:

\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

e. Thay \(x_0=-1\) vào phương trình, ta được:

\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

f. Thay \(x_0=5\) vào phương trình, ta được:

\(4.5^2-3.5-2.5+1=76\ne0\)

\(\Rightarrow x_0=5\) không là nghiệm của pt

13 tháng 12 2016

DO khong co dieu kien cua x nen ban hay lay x la mot so tu nhien bat ki

giả sử lấy x=1 thì ta có thể dễ dàng tính được tổng bằng 4^5=1024

 

5 tháng 10 2017

a, \(x^3-5x=0\)

\(\Rightarrow x\left(x^2-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)

b, \(4x^3-9x=0\)

\(\Rightarrow x\left(4x^2-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)

c, \(2x^3-72x=0\)

\(\Rightarrow2x\left(x^2-36\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm6\end{matrix}\right.\)

d, \(4\left(3x+1\right)^2+16=25\)

\(\Rightarrow4\left(3x+1\right)^2-9=0\)

\(\Rightarrow\left[2\left(3x+1\right)-3\right]\left[2\left(3x+1\right)+3\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}2\left(3x+1\right)-3=0\\2\left(3x+1\right)+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x+1=\dfrac{3}{2}\\3x+1=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\)

5 tháng 10 2017

a, \(x^2-5x=0\)

\(\Rightarrow x\left(x^2-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)

b, \(4x^3-9x=0\)

\(\Rightarrow x\left(4x^2-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)

c, \(2x^3-72x=0\)

\(\Rightarrow2x\left(x^2-36\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

\(=-6x^2\left(x^2+10x+25\right)-x^2+6x-9+2x^4-3x^2-2-4x^2\left(9x^2-24x+16\right)\)

\(=-6x^4-60x^3-150x^2-x^2+6x-9+2x^4-3x^2-2-4x^2\left(9x^2-24x+16\right)\)

\(=-4x^4-60x^3-154x^2+6x-11-36x^4+96x^3-64x^2\)

\(=-40x^4+36x^3-218x^2+6x-11\)

6 tháng 5 2015

\(x^4+2x^3-2x^2+2x-3=0\)

\(\left(x^4-1\right)+\left(2x^3-2x^2\right)+\left(2x-2\right)=0\)

\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+2x^2\left(x-1\right)+2\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)+2x^2+2\right]=0\)

\(\left(x-1\right)\left(x^3+x+x^2+1+2x^2+2\right)=0\)

\(\left(x-1\right)\left(x^3+3x^2+x+3\right)\)

\(\left(x-1\right)=0or\left(x^3+3x^2+x+3\right)=0\)

  • \(x-1=0\Leftrightarrow x=1\)
  • \(x^3+3x^2+x+3=0\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\Leftrightarrow x+3=0\left(x^2+1>0\right)\Leftrightarrow x=-3\)
6 tháng 12 2015

Ta có:

\(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\Leftrightarrow3x^2+x^2-13x+5=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x^2+2x-1\right)=0\)

Do đó:

\(3x-5=0\Leftrightarrow x=\frac{5}{3}\)

Vì  \(x_0\)  là giá trị của  \(x\)  thỏa mãn \(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\)  nên  \(x_0=x=\frac{5}{3}\)

Do đó:  \(3x_0=3.\frac{5}{3}=5\)

 

 

22 tháng 9 2020

a) x3 - 9x2 + 14x = 0

<=> x( x2 - 9x + 14 ) = 0

<=> x( x2 - 2x - 7x + 14 ) = 0

<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0

<=> x( x - 2 )( x - 7 ) = 0

<=> x = 0 hoặc x = 2 hoặc x = 7

b) x3 - 5x2 + 8x - 4 = 0

<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0

<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0

<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0

<=> x( x - 2 )2 - ( x - 2 )2 = 0

<=> ( x - 2 )2( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

c) x4 - 2x3 + x2 = 0

<=> x2( x2 - 2x + 1 ) = 0

<=> x2( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 2x3 + x2 - 4x - 2 = 0

<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0

<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( x2 - 2 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)

3 tháng 5 2018

Giải các phương trình và bất phương trình sau :

1.1

a) \(2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-3}{2}\right\}\)

b) \(5x-3< 2x+9\)

\(\Leftrightarrow5x-2x< 3+9\)

\(\Leftrightarrow3x< 12\)

\(\Leftrightarrow x< 4\)

Tập nghiệm của BPT là : \(S=\left\{x|x< 4\right\}\)

1.2

a) \(3x+2=0\)

\(\Leftrightarrow3x=-2\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-2}{3}\right\}\)

b) \(-x+5>6-2x\)

\(\Leftrightarrow-x+2x>-5+6\)

\(\Leftrightarrow x>1\)

Tập nghiệm của BPT là : \(S=\left\{x|x>1\right\}\)

c) \(\dfrac{2x-5}{x+3}=4\)

ĐKXĐ : \(x+3\ne0\Rightarrow x\ne-3\)

\(\Leftrightarrow\dfrac{2x-5}{x+3}=\dfrac{4\left(x+3\right)}{x+3}\)

\(\Rightarrow2x-5=4x+12\)

\(\Leftrightarrow2x-4x=5+12\)

\(\Leftrightarrow-2x=17\)

\(\Leftrightarrow x=\dfrac{-17}{2}\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-17}{2}\right\}\)

d) \(\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{-2;3\right\}\)

1.3

a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(2x+5-x-2\right).\left(2x+5+x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{\dfrac{-7}{3};-3\right\}\)

b) \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Tập nghiệm của pt là : \(S=\left\{2;3\right\}\)

17 tháng 7 2017

mk chỉ cần câu c thôi

17 tháng 7 2017

\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)