K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2023

Áp dụng hằng đẳng thức : 

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

Ta viết lại phương trình thành :

\(\left(4x+3+5-7x+3x-8\right)\left[\left(4x+3\right)^2+\left(5-7x\right)^2+\left(3x-8\right)^2\right]+3\left(4x+3\right)\left(5-7x\right)\left(3x-8\right)=0\)

\(\Leftrightarrow3\left(4x+3\right)\left(5-7x\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\5-7x=0\\3x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{5}{7}\\x=\dfrac{8}{3}\end{matrix}\right.\)

Vậy : \(S=\left\{-\dfrac{3}{4};\dfrac{5}{7};\dfrac{8}{3}\right\}\).

11 tháng 3 2016

<=>(4x-3)3+(5-7x)3+(3x-8)3=-3(3x-8)(4x+3)(7x-5)

=>-3(3x-8)(4x+3)(7x-5)=0

Th1:-3(3x-8)=0

=>3x-8=0

=>3x=8

=>x=\(\frac{8}{3}\)

Th2:4x+3=0

=>4x=-3

=>x=\(-\frac{3}{4}\)

Th3:7x-5=0

=>7x=5

=x=\(\frac{5}{7}\)

29 tháng 10 2017

Đặt \(\left(4x+3\right)^3=a^3\\ \left(5-7x\right)^3=b^3\\ \left(3x-8\right)^3=c^3\)

Từ giả thuyết ta có:

\(a^3-b^3+c^3=0\\ \Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b\right)=0\\ \Leftrightarrow\left(4x+3+5-7x+3x-8\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b\right)=0\\ \Leftrightarrow0\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b\right)=0\\ \Leftrightarrow-3ab\left(a+b\right)=0.\)

29 tháng 10 2017

sau đó bắt từng hạng tử =0 và giải ra

4 tháng 3 2018

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+7x^2+7x\right)+2=0\)

\(\Leftrightarrow x\left(2x^2+7x+7+2\right)=0\)

\(\Leftrightarrow x\left(2x^2+7x+9\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x+3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+6x\right)+\left(3x+9\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{3}{2}\end{matrix}\right.\)

chúc bạn học tốt!

4 tháng 3 2018

b​ài giải không đúng yêu cầu của đề => sai

28 tháng 6 2021

a) (7x - 8)(7x + 8) - 10(2x + 3)2 + 5x(3x - 2)2 - 4x(x - 5)2

= 49x2 - 64 - 10(4x2 + 12x + 9) + 5x(9x2 - 12x + 4)  - 4x(x2  - 10x + 25)

= 49x2 - 64 - 40x2 - 120x - 90 + 45x3 - 60x2 + 20x - 4x3 + 40x - 100x

= 41x3 - 51x2 - 160x - 154

b) (x2 - 3)(x2 + 3) - 5x2(x + 1)2 - (x2 - 3x)(x2 - 2x) + 4x(x + 2)2

= x4 - 9 - 5x2(x2 + 2x + 1) - x4 + 5x3 - 6x2 + 4x(x2 + 4x + 4)

= 5x3 - 6x2 - 5x4 - 10x3 - 5x2 + 4x3 + 16x2 + 16x - 9

= -5x4 - x3 + 5x2 + 16x - 9

28 tháng 6 2021

Trả lời:

a , ( 7x - 8 ) ( 7x + 8 ) - 10 ( 2x + 3 )+ 5x ( 3x - 2 )- 4x ( x - 5 )2

= 49x2 - 64 - 10 ( 4x2 + 12x + 9 ) + 5x ( 9x2 - 12x + 4 ) - 4x ( x2 - 10x + 25 )

= 49x2 - 64 - 40x2 + 120x - 90 + 45x3 - 60x2 + 20x - 4x3 + 40x2 - 100x

= 41x3 - 11x2 + 40x - 154

b , ( x- 3 ) ( x+ 3 ) - 5x( x + 1 )- ( x- 3x ) ( x- 2x ) + 4x ( x + 2 )2

= x4 - 9 - 5x2 ( x2 + 2x + 1 ) - ( x4 - 2x3 - 3x3 + 6x2 ) + 4x ( x2 + 4x + 4 )

= x4 - 9 - 5x4 - 10x3 - 5x2 - x4 + 2x3 + 3x3 - 6x2 + 4x3 + 16x2 + 16x

= - 5x4 - x3 + 5x+ 16x - 9

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

3 tháng 3 2019

a/ Đặt : \(\left\{{}\begin{matrix}a=4x-3\\b=3x-2\end{matrix}\right.\) \(\Leftrightarrow a+b=7x-5\)

Thay vào pt ta dc :

\(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\)

+) \(a=0\Leftrightarrow4x-3=0\Leftrightarrow x=\dfrac{3}{4}\)

+) \(b=0\Leftrightarrow3x-2=0\Leftrightarrow x=\dfrac{2}{3}\)

+) \(c=0\Leftrightarrow7x-3=0\Leftrightarrow x=\dfrac{3}{7}\)

Vậy...

b/ \(x^3-2x^2-x-6=0\)

\(\Leftrightarrow x^3-3x^2+x^2-3x+2x-6=0\)

\(\Leftrightarrow x^2\left(x-3\right)+x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]=0\)

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy..

3 tháng 3 2019

a) (4x - 3)3 + (3x - 2)3 = (7x - 5)3

\(\Leftrightarrow\) (4x - 3)3 + (3x - 2)3 = (4x - 3)3 + (3x - 2)3 + 3(4x - 3)(3x - 2)(4x - 3 + 3x - 2)

\(\Leftrightarrow\) 3(4x - 3)(3x - 2)(7x - 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\\x=\dfrac{5}{7}\end{matrix}\right.\)

5 tháng 3 2019

\(j,3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy...............................

5 tháng 3 2019

\(m,3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)