K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

Vì (4x+2)(x2+1)=0

=>\(\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}}\)

Vì x2\(\ge\)0=>x2+1>0

=>4x+2=0

=>4x=-2

=>x=-0,5

Vậy x=-0,5

14 tháng 4 2018

tk cho mk di mn

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)

\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)

Vậy: S={0;-7;8;-1}

2) Ta có: \(x^3-8x^2+17x-10=0\)

\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)

\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)

Vậy: S={2;1;5}

3) Ta có: \(2x^3-5x^2-x+6=0\)

\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)

4) Ta có: \(4x^4-4x^2-3=0\)

\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)

\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)

\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)

\(2x^2+1>0\forall x\in R\)

nên \(2x^2-3=0\)

\(\Leftrightarrow2x^2=3\)

\(\Leftrightarrow x^2=\frac{3}{2}\)

hay \(x=\pm\sqrt{\frac{3}{2}}\)

Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)

14 tháng 1 2018

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)

\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)

\(d,x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất x = -1

\(e,x^3-7x+6=0\)

\(\Leftrightarrow x^3-4x-3x+6=0\)

\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)

\(f,x^4-4x^3+12x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)

Vậy phương trình vô nghiệm

\(g,x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0

Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)

\(h,x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)

7 tháng 9 2016

a) Ta có: x+ 4x +5 = ( x2 + 4x + 4 ) +1 =  (x+2)2  + 1  >= 1 >0 với mọi x

b) Ta có : 4x- 4x +2 = ( 4x- 4x +1 ) + 1 = (2x+1) > 0 với mọi x

c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )+ 7/4 >0 với mọi x 

mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số 

7 tháng 9 2016

a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0

b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0

c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75  > 0

d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75  > 0

e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75  > 0

5 tháng 3 2019

\(j,3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy...............................

5 tháng 3 2019

\(m,3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)

6 tháng 9 2020

Tìm x biết:

4x2 - 6x = 0

\(\Leftrightarrow2x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x=\left\{0;\frac{3}{2}\right\}\)

b) 4x2 + 4x = -1

\(\Leftrightarrow4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2}\)

c) 5x2 + x = 0

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{5}\end{matrix}\right.\)

Vậy \(x=\left\{0;-\frac{1}{5}\right\}\)

d) x3 - 5x = 4x2

\(\Leftrightarrow x^3-4x^2-5x=0\)

\(\Leftrightarrow x^3+x^2-5x^2-5x=0\)

\(\Leftrightarrow x^2\left(x+1\right)-5x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-5x\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=5\end{matrix}\right.\)

Vậy x ={0; - 1; 5}

3x(x-2) = x-2

\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x=\left\{2;\frac{1}{3}\right\}\)

x3 - 16x = 0

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy x = {0; 4; -4}

11 tháng 10 2020

a) \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{-2;3\right\}\)

b) \(\left(x+8\right)^2=121\)

\(\Leftrightarrow\left(x+8\right)^2-121=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+19\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)

Vậy \(x\in\left\{-19;3\right\}\)

c) \(x^3-4x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{0;2\right\}\)

d) \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

11 tháng 10 2020

tìm x, biết

a) (2x-1)2 -25 =0

(2x-1)2 =25

(2x-1)2 =52

(2x-1) =5

2x =6

x =3

b) (x+8)2 =121

(x+8)2 =112

(x+8) =11

x =3

22 tháng 1 2016

Mình chỉ biết bài b) thôi, mà cũng ko biết có đúng ko

x4+x3+x+1=0

<=> (x4+x3)+(x+1)=0

<=> x3(x+1)+(x+1)

<=> (x+1)(x3+1)=0

=>x+1=0

    x3+1=0

=> x= -1

     x3= -1

=> x= -1