K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

\(4x^2+4x=80\Leftrightarrow4x^2+4x-80=0\)

\(\Leftrightarrow4x^2+4x+1-81=0\Leftrightarrow\left(2x+1\right)^2-9^2=0\)

\(\Leftrightarrow\left(2x-8\right)\left(2x+10\right)=0\Leftrightarrow x=4;x=-5\)

31 tháng 7 2021

Trả lời:

\(4x^2+4x=80\)

\(\Leftrightarrow4x^2+4x-80=0\)

\(\Leftrightarrow4x^2+4x+1-81=0\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-81=0\)

\(\Leftrightarrow\left(2x+1\right)^2-81=0\)

\(\Leftrightarrow\left(2x+1-9\right)\left(2x+1+9\right)=0\)

\(\Leftrightarrow\left(2x-8\right)\left(2x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-8=0\\2x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)

Vậy x = 4; x = - 5 là nghiệm của pt.

AH
Akai Haruma
Giáo viên
26 tháng 10 2023

Lời giải:

1. 
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$

$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$

2.

$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$

3.

$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$

$=(x-1)(x^2+3x+1)$

3 tháng 6 2021

a) \(2\left(x+3\right)=4x-\left(2+x\right)\)

\(2x+6=3x-2\)

\(-x=-8\)=>x=8

3 tháng 6 2021

b) \(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\) đk x khác 2 và -2

\(\dfrac{\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\)

=>\(x-2-5x-10=2x-3\)

\(-6x=9=>x=\dfrac{3}{2}tm\)

a:Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

BD chung

góc PBD=góc MDB

Do đo: ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

Xét tứ giác BHDK có

BH//DK

BK//DH

HB=HD

Do đó: BHDK là hình thoi

b: BHDK là hình thoi

nên HK là trung trực của BD(1)

ABCD là hình thoi

mà AC cắt BD tại O

nên O là trung điểm của BD(2), AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra O,H,K,A,C thẳng hàng

NV
3 tháng 8 2021

\(E=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-9\ge-9\)

\(E_{min}=-9\) khi \(x=2\)

3 tháng 8 2021

\(E=x^{^{ }2}-4x-5=x^2-2.2x+2^2-9=\left(x-2\right)^2-9\)

=>MIN(E)=-9 

dấu '=' xảy ra <=>x-2=0=>x=2

vậy MIN (E)=-9 khi x=2

\(A=\left(t+2\right)\left(3t-1\right)-t\left(3t+3\right)-2t+7\)

\(=3t^2-t+6t-2-3t^2-3t-2t+7\)

\(=\left(3t^2-3t^2\right)-\left(t-6t+3t+2t\right)-\left(2-7\right)\)

\(=0-0-\left(-5\right)=5\)

10 tháng 7 2021

A=(t+2)(3t−1)−t(3t+3)−2t+7A=(t+2)(3t−1)−t(3t+3)−2t+7

=3t2−t+6t−2−3t2−3t−2t+7=3t2−t+6t−2−3t2−3t−2t+7

=(3t2−3t2)−(t−6t+3t+2t)−(2−7)=(3t2−3t2)−(t−6t+3t+2t)−(2−7)

=0−0−(−5)=5

NV
5 tháng 1 2022

\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)

\(x^2-y^2-6x+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x+y-3\right)\left(x-y-3\right)\)

5 tháng 1 2022

Cảm ơn bạn nha :>>

1 tháng 12 2021

a,Ta có B = x2-x+x = x2

Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0

Vậy Min B = 0 tại x = 0

b,Ta có 4x-x2+3 = -x2+4x-4+7

                          = -(x2-4x+4)+7

                          = -(x-2)2+7

Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7

Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy Max c = 7 tại x = 2.

c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4

                           = -(x-1)2-x2-4

Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0

       x2 ≥ 0 => -x2 ≤ 0

Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0

-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5

-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5

Vậy Max D = -5 tại x = 0 hoặc x = 1

3 tháng 6 2021

a) Vì ABCD là hình bình hành ( gt )

⇒ AD // BC 

      F ∈ BC

⇒ AD // BF

⇒ ∠EDA = ∠EFB ( hai góc so le trong )

Xét △AED và △BEF, có :

∠EDA = ∠EFB ( cmt )

∠AED = ∠FEB ( hai góc đối đỉnh )

⇒ △AED ∼ △BEF (g-g)

b) Vì ABCD là hình bình hành ( gt )

⇒ AB // CD 

      E ∈ AB

⇒ BE // CD

Xét △FDC, có :

BE // CD ( cmt )

E ∈ DF ; B ∈ DC 

⇒ \(\dfrac{FB}{FC}=\dfrac{EB}{DC}\) (Hệ quả của định lí Ta-let)

⇒ \(\dfrac{BF}{BE}=\dfrac{FC}{DC}\) (1)

Vì △AED ∼ △BEF ( cmt )

⇒ \(\dfrac{AE}{BE}=\dfrac{AD}{BF}\) (TSDD)

⇒ \(\dfrac{AE}{AD}=\dfrac{BE}{BF}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{AE}{AD}=\dfrac{CF}{CD}\)

⇒ AD.CD = AE.CF

c) Xét △DGC, có : 

AE // DC ( cmt )

G ∈ AC ; G ∈ DE

⇒ \(\dfrac{DG}{DE}=\dfrac{GC}{AC}\) (Hệ quả của định lí Ta-let) (3)

Xét △FGC, có : 

AD // CF ( cmt )

G ∈ AC ; G ∈ DF

⇒ \(\dfrac{DG}{DF}=\dfrac{AG}{AC}\) (Hệ quả của định lí Ta-let) (4)

Từ (3) và (4) ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}=\dfrac{GC}{AC}+\dfrac{AG}{AC}\)

                     ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}\)  =  1

                     ⇒  \(\dfrac{1}{DG}\left(\dfrac{DG}{DE}+\dfrac{DG}{DF}\right)=\dfrac{1}{DG}\)

                     ⇒  \(\dfrac{1}{DG}=\dfrac{1}{DE}+\dfrac{1}{DF}\)