Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c. \(4x^2+12x+9=\left(2x\right)^2+2\cdot2x\cdot3+3^2=\left(2x+3\right)^2\)
d. \(9x^2+30x+25=\left(3x\right)^2+2\cdot3x\cdot5+5^2=\left(3x+5\right)^2\)
e. \(4x^2-20x+25=\left(2x\right)^2-2\cdot2x\cdot5+5^2=\left(2x+5\right)^2\)
a) \(-4x^5\cdot\left(x^3-4x^2+7x-3\right)=-4x^8+16x^7-28x^6+12x^5\)
b) \(4x^3y^2\cdot\left(-2x^2y+4x^4-3y^2\right)=-6x^5y^3+16x^7y^2-12x^3y^4\)
1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)
\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)
Vậy: S={0;-7;8;-1}
2) Ta có: \(x^3-8x^2+17x-10=0\)
\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)
\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)
Vậy: S={2;1;5}
3) Ta có: \(2x^3-5x^2-x+6=0\)
\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)
4) Ta có: \(4x^4-4x^2-3=0\)
\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)
\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)
\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)
mà \(2x^2+1>0\forall x\in R\)
nên \(2x^2-3=0\)
\(\Leftrightarrow2x^2=3\)
\(\Leftrightarrow x^2=\frac{3}{2}\)
hay \(x=\pm\sqrt{\frac{3}{2}}\)
Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)
a 2x-x^2-4 = - (x^2-2x+4)= -(x-2)^2
để -(x-2)^2 lớn nhất suy ra (x-2)^2 nhỏ nhất suy ra (x-2)^2 nhỏ nhất là 0 suy ra -(x-2)^2 nhỏ nhất là 0
b 1-4x-5x^2= 1 -(4x +5x^2) = 1- 4x( 1 + 5/4x)
để b lớn nhất suy ra 1-4x(1+5/4x) lớn nhất suy ra 4x(1+5/4x ) nhỏ nhất
nếu 4x âm suy ra x âm vì 5/4>1 nếu x âm suy ra -5/4x > 1 suy ra x âm thì 1+5/4 x âm suy ra b dương
4x dương suy ra x dương suy ra 1+5/4x dương suy ra b dương
vậy 4x(1+5/4x) k thể âm để 4x(1+5/4x) nhỏ nhất suy ra 4x(1+5/4x) = 0
4x = 0 suy ra x=0 1+5/4x = 0 suy ra 5/4x = -1 suy ra x=-4/5
suy ra b nhỏ nhất là 1-0 = 1
\(a,\left(x-2\right)^2=4x^2+4x+1\)
\(\Rightarrow\left(x-2\right)^2=\left(2x\right)^2+2.x.2+1^2\)
\(\Rightarrow\left(x-2\right)^2=\left(2x+1\right)^2\)
\(\Rightarrow\left(x-2\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-x-3=0\\3x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-x=3\\3x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-3;\dfrac{1}{3}\right\}\)
\(b,4x^3-4x^2+9-9x=0\)
\(\Rightarrow4x^2\left(x-1\right)+9\left(1-x\right)=0\)
\(\Rightarrow4x^2\left(x-1\right)+9\left(x-1\right)=0\)
\(\left(4x^2+9\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x^2+9=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^2=-9\\x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{-\dfrac{3}{2}}\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{-\dfrac{3}{2}};-\sqrt{-\dfrac{3}{2}};1\right\}\)
1. \(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
2. \(4x^2-4x+y^2+2y+2\)
\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
3. \(4x^2+4x+4y^2+4y+2\)
\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)
4. \(4x^2+y^2+12x+4y+13\)
\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
\(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
\(4x^2-4x+y^2+2y+2\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
a) \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\)
b) \(\left(x+8\right)^2=121\)
\(\Leftrightarrow\left(x+8\right)^2-121=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+19\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)
Vậy \(x\in\left\{-19;3\right\}\)
c) \(x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{0;2\right\}\)
d) \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)
\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)
\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
Bạn làm tương tự nhé
Dễ dàng nhận thấy 4x2 + 4x + = ( 2x )2 + 2.1.2x +
=> ... = 1
Vậy ta được 4x2 + 4x + 1 = ( 2x + 1 )2