K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(4x^2-17xy+13y^2\)

\(=4x^2-4xy-13xy+13y^2\)

\(=4x\left(x-y\right)-13y\left(x-y\right)\)

\(=\left(x-y\right)\left(4x-13y\right)\)

6 tháng 8 2018

Giải:

\(4x^2-17xy+13y^2\)

\(=4x^2-8xy+4y^2+9y^2-9xy\)

\(=4\left(x^2-2xy+y^2\right)+9y^2-9xy\)

\(=4\left(x-y\right)^2+9y\left(y-x\right)\)

\(=4\left(y-x\right)^2+9y\left(y-x\right)\)

\(=\left(y-x\right)\left[4\left(y-x\right)+9y\right]\)

\(=\left(y-x\right)\left(4y-4x+9y\right)\)

\(=\left(y-x\right)\left(13y-4x\right)\)

Vậy ...

27 tháng 12 2015

a,\(x^2-y^2+2x+1=\left(x^2-2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)b

\(4x^2-17xy+13y^2=\left(4x^2-4xy\right)+\left(13y^2-13xy\right)=4x\left(x-y\right)-13y\left(x-y\right)\)\(=\left(4x-13y\right)\left(x-y\right)\)

27 tháng 12 2015

Nếu thấy đúng thì tick nha bạn,cảm ơn.

9 tháng 7 2015

a) 4x2 - 17xy + 13y2

=4x2-4xy-13xy+13y2

=4x(x-y)-13y(x-y)

=(x-y)(4x-13y)

b) x8 + x4 +1

=x8+2x4+1-x4

=(x4+1)2-x4

=(x4+1-x2)(x4+1+x2)

2 tháng 11 2018

\(x^8+x^4+1\)

\(=x^8+2x^4+1-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

26 tháng 10 2018

       \(2x^2+13y^2-10xy-4x+12y+5\)

\(=\frac{1}{2}\left[4x^2+26y^2-20xy-8x+24y+10\right]\)

\(=\frac{1}{2}\left[\left(4x^2+25y^2+4-20xy+20y-8x\right)+y^2+4y+4+2\right]\)

\(=\frac{1}{2}\left[\left(2x\right)^2+\left(5y\right)^2+2^2-2.2x.5y+2.5y.2-2.2x.2+\left(y+2\right)^2+2\right]\)

\(=\frac{1}{2}\left[\left(2x-5y-2\right)^2+\left(y+2\right)^2+2\right]>0\forall x;y\)

29 tháng 1 2019

\(-4x^2+12xy-13y^2\\ =-\left(4x^2-12xy+13y^2\right)\\ =-\left[\left(4x^2-12xy+9y^2\right)+4y^2\right]\\ =-\left[\left(2x-3y\right)^2+4y^2\right]\)

Với mọi giá trị của biến thì \((2x-3y)^2\)\(4y^2\) luôn dương.

Vậy \(-[(2x-3y)^2+4y^2]\) luôn âm với \(\forall x,y\)

Hay \(-4x^2+12xy-13y^2\) luôn âm với mọi giá trị của biến.

9 tháng 11 2017

\(1,14x^2y^3-21x^3y^2\)

\(=7x^2y^2\left(2y-3x\right)\)

\(2,\left(x+3\right)^2-16\)

\(=\left(x+3\right)^2-4^2\)

\(=\left(x+3-4\right)\left(x+3+4\right)\)

\(=\left(x-1\right)\left(x+7\right)\)

\(3,x^2-13x+xy-13y\)

\(=\left(x^2-13x\right)+\left(xy-13y\right)\)

\(=x\left(x-13\right)+y\left(x-13\right)\)

\(=\left(x-13\right)\left(x+y\right)\)

\(4,x^2-4x+4-y^2\)

\(=\left(x^2-4x+4\right)-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-2-y\right)\left(x-2+y\right)\)

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

10 tháng 8 2017

f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0 
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0 
<=>(x-y)2+2(x-y)+1+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))

11 tháng 8 2017

2x X -3 x 5 x X = 52 - 24