K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

x^2 hay x2

29 tháng 7 2017

Nguyễn Thị Minh Nguyệt

Mình cũng nghĩ như bạn!

13 tháng 2 2022

Đề bài yêu cầu giải pt?

 

13 tháng 2 2022

e, \(\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=0\Leftrightarrow\left(x-2\right)\left(x+2+x-2\right)=0\Leftrightarrow x=0;x=2\)

f, \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-1\right)^2=0\Leftrightarrow x=1;x=-1\)

g, \(x^2\left(x-3\right)+4\left(3-x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=-2;x=3\)

h, \(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\Leftrightarrow x=4;x=-\dfrac{2}{3}\)

29 tháng 7 2017

Hình như bạn sai đề:

(4X-1) (X2+12) (-X+4) > 0

29 tháng 7 2017

Sai đâu bạn

2 tháng 4 2018

5 tháng 4 2022

`Answer:`

Bài 1:

a) \(7+2x=22-3x\)

\(\Leftrightarrow2x+3x=22-7\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

b) \(8x-3=5x+12\)

\(\Leftrightarrow8x-5x=12+3\)

\(\Leftrightarrow3x=15\)

\(\Leftrightarrow x=5\)

c) \(x-12+4x=25+2x-1\)

\(\Leftrightarrow x-12+4x-25-2x+1=0\)

\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)

\(\Leftrightarrow3x-36=0\)

\(\Leftrightarrow x=12\)

d) \(x+2x+3x-19=3x+5\)

\(\Leftrightarrow6x-19=3x+5\)

\(\Leftrightarrow6x-3x=5+19\)

\(\Leftrightarrow3x=24\)

\(\Leftrightarrow x=8\)

Bài 2:

a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)

b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)

\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)

d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)

\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow x^2-5x-2x+10=0\)

\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)

20 tháng 3 2022

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
9 tháng 9 2021

x^2(x-3) +4(3-x)=0

x^2(x-3)-4(x-3)=0

(x^2-4)(x-3)=0

xảy ra 2: Th1:x^2-4=0 =>x=-2 hoặc x=2

               Th2:x-3=0 =>x=3

9 tháng 9 2021

b)(2x-1-x-3)2=0         

=>x-4=0

=>x=4

13 tháng 10 2017

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)