Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BCD có BD = CD ( giả thiết )
\( \Rightarrow \) D thuộc trung trực BC do cách đều 2 đầu mút đoạn BC
Mà AM là trung trực của BC
\( \Rightarrow \) D thuộc đường thẳng AM
\( \Rightarrow \) A, M, D thẳng hàng
Tham khảo:
Vì M thuộc trung trực EF nên ME = MF ( tính chất điểm thuộc trung trực )
Tương tự \( \Rightarrow \) NE = NF ( tính chất điểm thuộc trung trực )
Xét 2 tam giác MEN và MFN có :
MN là cạnh chung
ME = MF
NE = NF
\(\Rightarrow \Delta MEN = \Delta MFN (c-c-c)\)
Xét tam giác ABD và tam giác ACD có :
AB = AC ( giả thiết )
BD = CD ( giả thiết )
AD cạnh chung
\( \Rightarrow \Delta ABD =\Delta ACD (c-c-c)\)
\( \Rightarrow \)\(\widehat {BAD} = \widehat {CAD}\)( 2 góc tương ứng )
Xét tam giác ABM và ta giác ACM có :
AB = AC ( giả thiết )
AM cạnh chung
\(\widehat {BAD} = \widehat {CAD}\)( chứng minh trên )
\(\Delta ABM=\Delta ACM (c-g-c)\)
\(\Rightarrow MC = MB\) ( 2 cạnh tương ứng )
\( \Rightarrow \) M là trung điểm BC
a: Xét ΔCBD có
CA vừa là đường cao, vừa là đường trung tuyến
nên ΔCBD cân tại C
c: Gọi N là trung điểm của AC
=>QN là đường trung trực của AC
=>QN//AD
Xét ΔCAD có
N là trung điểm của AC
NQ//AD
=>Q là trung điểm của CD
Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
mà BQ là trung tuyến
nên B,M,Q thẳng hàng
5: M nằm trên đường trung trực của EF
=>ME=MF
N nằm trên đường trung trực của EF
=>NE=NF
Xét ΔMEN và ΔMFN có
ME=MF
NE=NF
MN chung
Do đó; ΔMEN=ΔMFN
Bài 4:
AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
=>D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
=>AD\(\perp\)BC tại trung điểm của BC
=>M là trung điểm của BC
Bài 5
Do M nằm trên đường trung trực của EF (gt)
⇒ ME = MF
Do N nằm trên đường trung trực của EF (gt)
⇒ NE = NF
Xét ∆EMN và ∆FMN có:
MN là cạnh chung
ME = MF (cmt)
NE = NF (cmt)
⇒ ∆EMN = ∆FMN (c-c-c)