\(4\left|2-x\right|-3\left|4+x\right|=3\)

Giải phương tình:

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(4\left|2-x\right|-3\left|4+x\right|=3\)(1)

Ta có bảng xét dấu:

x 4 2 
2-x+ +0-
4+x-0+ +
      

(*) Nếu \(x\le-4\), ta có:

PT (1):\(4\left(2-x\right)-3\left(-4-x\right)=3\)

\(\Leftrightarrow8-4x+12+3x=3\)

\(\Leftrightarrow20-x=3\)

\(\Leftrightarrow-x=-17\)

\(\Leftrightarrow x=17\)( không thỏa mãn )

(*) Nếu \(-4< x\le2\), ta có:

PT (1): \(4\left(2-x\right)-3\left(4+x\right)=3\)

\(\Leftrightarrow8-4x-12-3x=3\)

\(\Leftrightarrow-4-7x=3\)

\(\Leftrightarrow-7x=7\)

\(\Leftrightarrow x=-1\)( thỏa mãn )

(*) Nếu \(x>2\), ta có :

PT (1):\(4\left(2-x\right)-3\left(4+x\right)=3\)

\(\Leftrightarrow-8+4x-12-3x=3\)

\(\Leftrightarrow-20+x=3\)

\(\Leftrightarrow x=23\)( thỏa mãn )

Vậy phương trình có tập nghiệm \(S=\left\{23;-1\right\}\)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

5 tháng 3 2020

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)

\(\Rightarrow x=\pm1\)

5 tháng 3 2020

Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;

17 tháng 7 2019

@Akai Haruma help me,ple

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

Ta thấy \(|x-3|\geq 0; |5x-1|\geq 0, \forall x\in\mathbb{R}\)

Do đó để tổng \(2|x-3|+|5x-1|=0\) thì \(|x-3|=|5x-1|=0\)

\(\Rightarrow \left\{\begin{matrix} x=3\\ x=\frac{1}{5}\end{matrix}\right.\) (vô lý)

Do đó PT vô nghiệm

Bài 2: Ta xét các khoảng, đoạn giá trị của $x$ để phá trị tuyệt đối.

\(2|x|-|x+1|=2\)

TH1: \(x\geq 0\Rightarrow \left\{\begin{matrix} |x|=x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:

\(2x-(x+1)=2\Leftrightarrow x=3\) (thỏa mãn)

TH2: \(0>x\geq -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:

\(-2x-(x+1)=2\Leftrightarrow x=-1\) (t/m)

TH3: \(x< -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=-(x+1)\end{matrix}\right.\). PT trở thành:

\(-2x+(x+1)=2\Leftrightarrow x=-1\) (loại vì $x< -1$)

Vậy $x=-1$ hoặc $x=3$

10 tháng 2 2019

a) (x+3)4+(x+5)4=16

<=>(x+3)4+(x+5)4=04+24

TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)

TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)

b)(x-2)4+(x-3)4=1=04+14

TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại

TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.

c)(x+1)4+(x-3)4=82=34+(-1)4

làm tương tự => x=2.

d) làm tương tự câu b

16 tháng 2 2019

a) \(\left(x-3\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)-\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2-6x+9-x^2-2x-1=0\)

\(\Leftrightarrow-8x+8=0\Leftrightarrow-8\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy phương trình có tập nghiệm S = {1}

b) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

<=> x - 2 = 0 hoặc x + 2 = 0 hoặc x + 4 = 0

<=> x = 2 hoặc x = -2 hoặc x = -4

Vậy phương trình có tập nghiệm S = {  2; -2; -4 }

c) \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(9x^2-42x+49\right)-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-50x+45=0\Leftrightarrow5\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 1; 9 }

26 tháng 4 2019

a, (x+3)^2 + 2(x-1)^2 = (3x-7)(x-2)

<=> x^2 + 6x + 9 + 2x^2 - 4x + 2 = 3x^2 - 13x + 14

<=> 15x - 3 = 0 

<=> x = 1/5

Vậy x=1/5 là nghiệm của phương trình 

b, ( x - 4)( x - 3)= (x-4)^2

Đặt x - 4 = y ta có phương trình :

y(y +1 ) = y^2

<=> y^2+y= y^2

<=> y=0

=> x- 4 =0 

<=> x=4

Vậy x=4 là nghiệm của phương trình 

5 tháng 4 2020
https://i.imgur.com/SOXfFlR.jpg
5 tháng 4 2020
https://i.imgur.com/OF5t7D1.jpg
4 tháng 4 2020

ĐK: \(x\notin\left\{-2,-3,-4,-5,-6\right\}\)

\(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{15}\)

\(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{15}\)\(\Leftrightarrow\frac{x+6-x-2}{\left(x+6\right)\left(x+2\right)}=\frac{1}{15}\) \(\Leftrightarrow\frac{4}{x^2+8x+12}=\frac{1}{15}\)

\(\Leftrightarrow x^2+8x+12=60\Leftrightarrow x^2+8x-48=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-12\end{matrix}\right.\) (tm)