
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

a: \(B=3\left(1+3+3^2+...+3^{120}\right)⋮3\)
b: \(B=4\left(3+...+3^{119}\right)⋮4\)
Đặt \(A=\frac{4c-13}{c-1}=\frac{\left(4c-4\right)-9}{c-1}=\frac{4\left(c-1\right)-9}{c-1}=4-\frac{9}{c-1}\)
Để 4c-13 chia hết cho c-1 thì A nguyên
=> \(\frac{9}{c-1}\inℤ\Rightarrow c-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow c\in\left\{-8;-2;0;2;4;10\right\}\)
\(4c-13⋮c-1\)
\(4\left(c-1\right)-9⋮c-1\)
\(-9⋮c-1\)hay \(c-1\inƯ\left(-9\right)=\left\{\pm1;\pm3;\pm9\right\}\)