\(\le\)\(a^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)

\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)

\(\Leftrightarrow ab+bc+ca\le3\)

\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Đến đây dễ rồi để YẾN tự làm

\(c)\)

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(d)\)

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=[\left(a+b\right)c]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)[a\left(b+c\right)+c\left(b+c\right)]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

31 tháng 5 2020

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)

\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)

và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)

Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)

Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3

19 tháng 12 2017

nham nha mn, phai  laf 2(a^4+b^4)>=(a+b)(a^3+b^3)

12 tháng 7 2016

Thế này nhé ^^

  • Ta có : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2\right)-bc-ac+c^2-3ab\right]\)

\(=\left[\left(a+b\right)+c\right].\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=a^3+b^3+c^3-3abc\)

  • \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

25 tháng 9 2016

tất cả các số bé kia là mũ nha các bạn(số 2,3 ấy)

26 tháng 9 2016

1. biến đổi vế trái 

= a2x2 + a2y2 + b2x2 + b2y2 

= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy 

= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$a+b+c=0\Leftrightarrow (a+b+c)^2=0$

$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$

$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$

Mà $a^2\geq 0$

Do đó: $a^2(ab+bc+ac)\leq 0$

$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)

Dấu "=" xảy ra khi $a=0$

b)

Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)

Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$

$\Leftrightarrow (3c+3)^2\geq 9c^2$

$\Leftrightarrow (c+1)^2\geq c^2$

$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)

Vậy.......

1a)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi x=y=1

b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi a=b=c=0