Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
\(\dfrac{4}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}-\dfrac{2y}{6}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1}{6}+\dfrac{2y}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1+2y}{6}\)
\(\Rightarrow24=x\left(1+2y\right)\)
\(\Rightarrow x;1+2y\inƯ\left(24\right)\)
\(Ư\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Mà 1+2y lẻ nên:
\(\left\{{}\begin{matrix}1+2y=1\Rightarrow2y=0\Rightarrow y=0\\x=24\\1+2y=-1\Rightarrow2y=-2\Rightarrow y=-1\\x=-24\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1+2y=3\Rightarrow2y=2\Rightarrow y=1\\x=8\\1+2y=-3\Rightarrow2y=-4\Rightarrow y=-2\\x=-8\end{matrix}\right.\)
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)
Áp dụng tỉ lệ thức ta có :
\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)
b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)
Áp dụng tỉ lệ thức ta có "
\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Các câu còn lại bạn làm tương tự
Ta có : \(\dfrac{4a-3b}{2}=\dfrac{5b-4c}{3}=\dfrac{3c-5a}{4}\)
\(\Leftrightarrow\dfrac{20a-15b}{10}=\dfrac{15b-12c}{9}=\dfrac{12c-20a}{16}=\dfrac{20a-15b+15b-12c+12c-20a}{10+9+16}=0\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-3b=0\\5b-4c=0\\3c-5a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{4}\\\dfrac{b}{4}=\dfrac{c}{5}\\\dfrac{c}{5}=\dfrac{a}{3}\end{matrix}\right.\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)