Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6xy + 48x2y2 - 3y2 - 3x2
=3(16x2y2-x2+2xy-y2)
=3[(4xy)2-(x-y)2]
=3[(4xy+(x-y)]*[(4xy)-(x-y)]
=3(4xy+x-y)(4xy-x+y)
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
\(\left(2x^2-y\right)\left(4x^2-5xy^2+3y^2\right)\)
\(=\left(2x^2-y\right)4x^2-\left(2x^2-y\right)5xy^2+\left(2x^2-y\right)3y^2\)
\(=8x^4-4x^2y-10x^3y^2+5xy^3+6x^2y^2-3y^3\)
\(\text{Câu 1: }\left(2x^2-y\right)\left(4x^2-5xy^2+3y^2\right)\\ \\=2x^2\left(4x^2-5xy^2+3y^2\right)-y\left(4x^2-5xy^2+3y^2\right)\\ \\=\\8x^4-10x^3y^2+6x^2y^2-4x^2y+5xy^3+3y^3\)
Câu 2:
\(\text{ a) }48x^2y^2-3y^2+6xy-3x^2\\ \\ =3\left(16x^2y^2-y^2+2xy-x^2\right)\\ \\ =3\left[16x^2y^2-\left(x^2-2xy+y^2\right)\right]\\ =3\left[\left(4xy\right)^2-\left(x-y\right)^2\right]\\ \\ =3\left(4xy-x+y\right)\left(4xy+x-y\right)\)
\(\text{b) }2x^3y-4x^2y^2+2xy^3\\ \\=2xy\left(x^2-2xy+y^2\right)\\ \\=2xy\left(x-y\right)^2\)
\(\text{c) }4x^2-6x^3y-2x^2+8x\\ \\=2x^2-6x^3y+8x\\ \\ =2x\left(x-3x^2y+4\right)\)
\(\text{d) }6xy+5x-5y-3x^2-3y^2\\ \\ =\left(5x-5y\right)-\left(3x^2-6xy+3y^2\right)\\ \\ =5\left(x-y\right)-3\left(x^2-2xy+y^2\right)\\ \\ =5\left(x-y\right)-3\left(x-y\right)^2\\ \\ =\left(x-y\right)\left[5-3\left(x-y\right)\right]\\ =\left(x-y\right)\left(5-3x+3y\right)\)
a) Ta có: \(3x^2-6xy+3y^2\)
\(=3\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)^2\)
b) Ta có: \(12x^5y+24x^4y^2+12x^3y^3\)
\(=12x^3y\left(x^2+2xy+y^2\right)\)
\(=12x^3y\left(x+y\right)^2\)
c) Ta có: \(64xy-96x^2y+48x^3y-8x^4y\)
\(=8xy\left(8-12x+6x^2-x^3\right)\)
\(=8xy\left(2-x\right)^3\)
d) Ta có: \(54x^3+16y^3\)
\(=2\left(27x^3+8y^3\right)\)
\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
a) (x2 + xy) - (5x + 5y) = x(x + y) - 5(x + y)
= (x + y)(x - 5)
b) (2x - x +2 )(2x + x - 2) = (x + 2)(x - 2)
d) 2x2 + 2x - 7x - 7 = (2x2 + 2x) - (7x + 7)
= 2x(x + 1) - 7(x + 1) = (x + 1)(2x - 7)
c) 3(16x2y2 - y2 + 2xy - x2)
= 3\(\left[16x^2y^2-\left(y^2-2xy+x^2\right)\right]\)
= 3\(\left[16x^2y^2-\left(y-x\right)^2\right]\)
= 3(4xy - y + x)(4xy + y - x)
P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y
= ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)
= ( x+ y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+ y)
= ( x+ y)^3 - 3 ( x+ y)^2 + 3(x +y)
Thay x+ y = 101 ta có :
= 101^3 - 3.101^2 + 3.101
= 101 . ( 101^2 - 3.101 + 3 )
= 101 .9901
= 1000001
Bài giải:
\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)
\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)
\(=101^3-3.101^2+3.101+2012\)
\(=101^3-3.101^2+3.101-1+2013\)
\(=100^3+2013=1002013\)
Tự kết luận nha bạn ^^
\(B=x^3-3x^2+3xy^2+3x^2y+y^3-3y^2-6xy+3x+3y+2012\\ =\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\\ =\left[\left(x+y\right)^3-3\left(x+y\right)^3+3\left(x+y\right)-1\right]+2013\\ =\left(x+y-1\right)^3+2013\)thay x+y=101 vào ta có
\(B=\left(101-1\right)^3+2013=1002013\)
48x^2.y^2 - 3y^2 + 6xy - 3x^2
= 3. [16.x^2.y^2-y^2 + 2xy - x^2]
= = 3. { [4.x.y]^2 - [x^2-2xy+y^2 ]}
= 3. { [4xy]^2 - [x-y]^2] }
= 3. [4xy-x+y]. [4xy + x-y] }