Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{-2}{3}x+\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{1}{10}-\frac{1}{5}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{3}{20}\)
1) \(\left|4-2x\right|.\dfrac{1}{3}=\dfrac{1}{3}\)
\(\left|4-2x\right|=\dfrac{1}{3}:\dfrac{1}{3}\)
\(\left|4-2x\right|=\dfrac{1}{3}.3\)
\(\left|4-2x\right|=1\)
=>\(4-2x=\pm1\)
+)\(TH1:4-2x=1\) +)\(TH2:4-2x=-1\)
\(2x=4-1\) \(2x=4-\left(-1\right)\)
\(2x=3\) \(2x=4+1\)
\(x=3:2\) \(2x=5\)
\(x=1,5\) \(x=5:2\)
Vậy x=1,5 \(x=2,5\)
Vậy x=2,5
2) \(\left(-3\right)^2:\left|x+\left(-1\right)\right|=-3\)
\(9:\left|x+\left(-1\right)\right|=-3\)
\(\left|x+\left(-1\right)\right|=9:\left(-3\right)\)
\(\left|x+\left(-1\right)\right|=-3\)
=> \(x+\left(-1\right)\) sẽ không có giá trị nào ( Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng 0 )
Vậy x = \(\varnothing\)
mk giúp bạn câu cuối nhé:
3|x+2|-5=16
3|x+2|=16+5
3|X+2|=21
|x+2|=21:3
|x+2|=7
=>x+2=7 hoặc x+2=-7
+) với x+2=7 +) với x+2= -7
x=5. x=-9
vậy x€{5,-9}
nếu có TGian mk sẽ giải cho bạn mấy câu trên
cam ơn bạn nhé bạn có giup mình not câu trên trong vong ngay ko
a) \(2^{2x}.2^4=1024\)
\(2^{2x}=1024:2^4\)
\(2^{2x}=1024:16\)
\(2^{2x}=64\)
\(2^{2x}=2^6\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
vay \(x=3\)
b) \(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=2.5.3^{12}+2^3.\left(3^3\right)^4\)
\(2.3^x=2.5.3^{12}+2^3.3^{12}\)
\(2.3^x=2.3^{12}.\left(5+2^2\right)\)
\(2.3^x=2.3^{12}.9\)
\(2.3^x=2.3^{12}.3^2\)
\(2.3^x=2.3^{14}\)
\(\Rightarrow x=14\)
vay \(x=14\)
c) \(5^8.25^x+1=5^{17}\)
\(5^8.\left(5^2\right)^x+1=5^{17}\)
\(5^8.5^{2x}+1=5^{17}\)
\(5^{8+2x}=5^{17}-1\)
e) \(\left(2x-4\right)^5=\left(2x-4\right)^3\)
\(\left(2x-4\right)^5-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[\left(2x-4\right)^2-1\right]=0\)
\(\left(2x-4\right)\left(2x-4-1\right)\left(2x-4+1\right)=0\)
\(\left(2x-4\right)\left(2x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow2x-4=0\)hoac \(\orbr{\begin{cases}2x-5=0\\2x-3=0\end{cases}}\)
\(\Rightarrow2x=4\)hoac \(\orbr{\begin{cases}2x=5\\2x=3\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
vay \(x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
d) khó nhất mk làm nhé :
\(\left|2x-1\right|=\left(-4\right)^2\)
\(\left|2x-1\right|=16\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=16\\2x-1=-16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=17\\2x=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{17}{2}\\x=-\frac{15}{2}\end{cases}}\)
\(1)x+\frac{5}{6}\times2\frac{2}{5}-1\frac{1}{4}=35\%\)
\(x+\frac{5}{6}\times\frac{12}{5}-\frac{5}{4}=\frac{7}{12}\)
\(x+\frac{5}{6}\times\frac{12}{5}=\frac{7}{12}+\frac{5}{4}\)
\(x+\frac{5}{6}.\frac{12}{5}=\frac{8}{5}\)
\(x+\frac{5}{6}=\frac{8}{5}:\frac{12}{5}\)
\(x+\frac{5}{6}=\frac{2}{3}\)
\(x=\frac{2}{3}-\frac{5}{6}\)
\(x=-\frac{1}{6}\)
HỌC TỐT !
\(2\)) \(\left|x-\frac{1}{2}\right|-\frac{3}{4}=0\)
\(\left|x-\frac{1}{2}\right|\) \(=0+\frac{3}{4}\)
\(\left|x-\frac{1}{2}\right|\) \(=\frac{3}{4}\)
\(x-\frac{1}{2}\) \(=\frac{3}{4}\)hoặc \(-\frac{3}{4}\)
Ta xét 2 trường hợp :
Trường hợp 1 : \(x-\frac{1}{2}=\frac{3}{4}\)
\(x\) \(=\frac{3}{4}+\frac{1}{2}\)
\(x\) \(=\frac{5}{4}\)
Trường hợp 2 : \(x-\frac{1}{2}=-\frac{3}{4}\)
\(x\) \(=-\frac{3}{4}+\frac{1}{2}\)
\(x\) \(=-\frac{1}{4}\)
Vậy \(x\in\text{{}\frac{5}{4};-\frac{1}{4}\)}
\(\frac{4}{3x}+\frac{3}{4\left(2x-\frac{4}{5}\right)}=\frac{1}{2}\left(đkxđ:x\ne0;\frac{2}{5}\right)\)
\(< =>\frac{4}{3x}+\frac{3}{8x-\frac{16}{5}}=\frac{1}{2}\)
\(< =>\frac{4\left(8x-\frac{16}{5}\right)}{3x\left(8x-\frac{16}{5}\right)}+\frac{3\left(3x\right)}{\left(8x-\frac{16}{5}\right)3x}=\frac{1}{2}\)
\(< =>\frac{32x-\frac{64}{5}+9x}{24x^2-\frac{48x}{5}}=\frac{1}{2}\)
\(< =>\left(41x-\frac{64}{5}\right)2=24x^2-\frac{48x}{5}\)
\(< =>82x-\frac{128}{5}=24x^2-\frac{48x}{5}\)
\(< =>24x^2-82x-\frac{48x}{5}+\frac{128}{5}=0\)
\(< =>24x^2-x\left(82+\frac{48}{5}\right)+\frac{128}{5}=0\)
\(< =>\orbr{\begin{cases}x_1=-0,3036\\x_2=-3,513\end{cases}}\)(giải delta)
Vậy tập nghiệm của phương trình trên là \(\left\{-0,3036;-3,513\right\}\)
\(\frac{4}{3}x+\frac{3}{4}\left[2x-\frac{4}{5}\right]=\frac{1}{2}\)
\(\Leftrightarrow\frac{4}{3}x+\frac{3}{2}x-\frac{3}{5}=\frac{1}{2}\)
\(\Leftrightarrow\frac{17}{6}x=\frac{11}{10}\)
\(\Leftrightarrow x=\frac{187}{60}\)