Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K=2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)
K=2.(4-2/2.4+6-4/4.6+8-6/6.8+...+2010-2008/2008.2010)
K=2.(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010)
K=2.(1.2-1.2010)
K=2.502/1005
K=1004/1005
F=4/2.4+4/4.6+4/6.8+..........+4/2008.2010
F=2/2-2/4+2/4-2/6+2/6-2/8+......+2/2008-2/2010
F=2/2- 2/4+2/4-2/6+2/6-2/8+......+2/2008-2/2010
F=2/2-2/2010
=>F=2008/2010=1004/1005
Gọi A= 4/2.4+4/4.6+4/6.8+...+4/2008.2010
A/2= 2/2.4+2/4.6+...+2/2008.2010
Mà 2/2.4=1/2-1/4; 2/4.6=1/4-1/6 ....
Vậy A/2= (1/2-1/4)+(1/4-1/6)+....+(1/2008-1/2010)
A/2=1/2-1/2010=2010/4020-2/4020=2008/4...
A= 2008.2/4020=1004/1005
C = 4/2.4 + 4/4.6 + 4/6.8 + ... + 4/2008.2010
C = 2 . (2/2.4 + 2/4.6 + 2/6.8 + ... + 2/2008.2010)
C = 2 . (1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2008 - 1/2010)
C = 2 . (1/2 - 1/2010)
C = 2 . 502/1005
C = 1004/1005
A=4/2.4+4/4.6+4/6.8+...+4/2008.2010
=2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)
=2.(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010)
=2.(1/2-1/2010)
=2.502/1005
=1004/1005
Vậy A=1004/1005
100% giải đúng đầu tiên:
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.\frac{2}{2.4}+2.\frac{2}{4.6}+2.\frac{2}{6.8}+...+2.\frac{2}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+..+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}=\frac{1004}{1005}\)
a, \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{2}{75}\right)\)
\(=\frac{1}{75}\)
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1004}{2010}\right)\)
\(=2\left(\frac{502}{1005}\right)\)
\(=\frac{1004}{1005}\)
Tk hộ =v
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}.\frac{2}{75}=\frac{1}{75}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)=2.\left(\frac{1}{2}-\frac{1}{2010}\right)=2.\frac{502}{1005}=\frac{1004}{1005}\)
=> K : 2 = \(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{2008.2010}\)
= \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\)
=\(\frac{1}{2}-\frac{1}{2010}=\frac{502}{1005}\)
\(\Rightarrow K=\frac{1004}{1005}\)
Vậy \(K=\frac{1004}{1005}\)
F=2 .(1/2-1/4+1/4-1/6+......+1/2008 - 1/2010)
= 2.(1/2-1/2010)
= 2. 502/1005
= 1004/1005
\(\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+............+\dfrac{4}{2008.2010}\)
\(=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+......+\dfrac{2}{2008.2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(=2.\dfrac{502}{1005}=\dfrac{1004}{1005}\)
= 4/2.4 + 4/4.6 + 4/6.8 + ... + 4/99.100
= 2/2 - 2/4 + 2/4 - 2/6 + 2/6 - 2/8 + ... + 2/99 - 2/100
= 2/2 - 2/100
= 98/100 = 49/50
2/1.3+2/3.5+2/5.7+...+2/99.100\