Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^{17}+4^3}{4^{16}+4^2}=\dfrac{4^3\left(4^{14}+1\right)}{4^2\left(4^{14}+1\right)}=\dfrac{4^3}{4^2}=4\)
\(\dfrac{4^{17}+4^3}{4^{16}+4^2}=\dfrac{4^3\left(4^{14}+1\right)}{4^2\left(4^{14}+1\right)}=4\)
\(A=\dfrac{\left(17+\dfrac{1}{4}-4-\dfrac{3}{16}-13-\dfrac{5}{6}\right)\cdot\left(-\dfrac{4}{7}\right)+\dfrac{27}{4}}{\left(5+\dfrac{2}{7}-5-\dfrac{1}{3}\right):\left(6+\dfrac{2}{3}-4-\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{37}{84}+\dfrac{27}{4}}{-\dfrac{1}{21}:\dfrac{13}{6}}=\dfrac{-1963}{6}\)
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{256}-\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)
= \(\frac{1.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{4}\right)}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{3}{64}}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{12}{256}}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.3.\left(\frac{1}{4}+\frac{21}{256}\right)}{3.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}+\frac{17}{256}\right)}{\frac{1}{4}+\frac{1}{64}}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}\right)+3.\frac{17}{256}:\left(\frac{1}{4}+\frac{1}{64}\right)}{1.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(3+\frac{51}{256}:\frac{17}{64}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(3+\frac{3}{4}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\frac{15}{4}+\frac{5}{8}\)
= \(\frac{15}{8}+\frac{5}{8}\)
= \(\frac{5}{2}\)
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)
\(=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{111}{68}+\frac{5}{8}\)
\(=\frac{49}{34}\)
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
\(x+\frac{1}{19}+x+\frac{2}{18}+x+\frac{3}{17}+x+\frac{4}{16}=4\)
\(4x+\left(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+\frac{4}{16}\right)=4\)
\(4x+\frac{6863}{11628}=4\)
\(4x=4-\frac{6863}{11628}=\frac{39649}{11628}\)
\(\Rightarrow x=\frac{39649}{11628\cdot4}=\frac{39649}{46512}\)
\(1)\)\(-\dfrac{10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
\(=\dfrac{10}{11}\left(-\dfrac{8}{9}+\dfrac{7}{18}\right)\)
\(=\dfrac{10}{11}\left(\dfrac{-16}{18}+\dfrac{7}{18}\right)\)
\(=\dfrac{10}{11}.\left(-\dfrac{1}{2}\right)=-\dfrac{5}{11}\)
\(2)\)\(\dfrac{12}{25}.\dfrac{23}{7}-\dfrac{12}{7}.\dfrac{13}{25}\)
\(=\dfrac{12}{7}.\dfrac{23}{25}-\dfrac{12}{7}.\dfrac{13}{25}\)
\(=\dfrac{12}{7}.\left(\dfrac{23}{25}-\dfrac{13}{25}\right)\)
\(=\dfrac{12}{7}.\dfrac{2}{5}=\dfrac{24}{35}\)
\(3)\)\(\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{2}{15}.\dfrac{-3}{7}\)
\(=\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{3}{7}.\dfrac{-2}{15}\)
\(=\dfrac{3}{7}.\left(\dfrac{16}{15}+\dfrac{2}{15}\right)\)
\(=\dfrac{3}{7}.\dfrac{18}{15}=\dfrac{18}{35}\)
\(4)\)\(-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-12}{13}.\dfrac{4}{17}\)
\(=-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-4}{13}.\dfrac{12}{17}\)
\(=-\dfrac{4}{13}.\left(\dfrac{5}{17}+\dfrac{12}{17}\right)\)
\(=-\dfrac{4}{13}.\dfrac{17}{17}=-\dfrac{4}{13}\)
`#040911`
`1)`
`-10/11 * 8/9 + 7/18 . 10/11`
`= 10/11 * (-8/9 + 7/18)`
`= 10/11 * (-1/2)`
`= -5/11`
`2)`
`12/25 * 23/7 - 12/7 *13/25`
`= 12/7 * 23/25 - 12/7 * 13/25`
`= 12/7 * (23/25 - 13/25)`
`= 12/7 * 2/5`
`= 24/35`
`3)`
`3/7 * 16/15 - 2/15 * (-3)/7`
`= 3/7 * (16/15 + 2/15)`
`= 3/7 * 6/5`
`= 18/35`
`4)`
`-4/13 * 5/17 + (-12)/13 * 4/17`
`= -4/17 * 5/13 + (-12)/13 * 4/17`
`= 4/17 * (-5/13 - 12/13)`
`= 4/17 * (-17)/13`
`= -4/13`
a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)
\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)
\(=\dfrac{-1621}{126}\)
b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)
\(=-\dfrac{49}{20}\)
A=\(2^2-9^3+4^{-2}.16-2.5^2\)
\(=4-729+1-50=-774\)
B=\(\left(2^3.2\right).\dfrac{1}{2}+3^{-2}.3^2-7.1+5\)
\(B=2^4.\dfrac{1}{2}+1-7+5=8+1-7+5=7\)
C = 2-3 + (52)3.5-3 + 4-3.16 - 2.32 - 105.(\(\dfrac{24}{51}\))0
C = \(\dfrac{1}{8}\) + 56.5-3 + 4-3.42 - 2.9 - 105.1
C = \(\dfrac{1}{8}\) + 53 + \(\dfrac{1}{4}\) - 18 - 105
C = (\(\dfrac{1}{8}\) + \(\dfrac{1}{4}\)) - (105 - 125 + 18)
C = \(\dfrac{3}{8}\) - (-20 + 18)
C = \(\dfrac{3}{8}\) + 2
C = \(\dfrac{19}{8}\)
( 417 + 43 ) : ( 416 + 42 )
= [ 43 . ( 414 + 1 ) ] : [ 42 . ( 414 + 1 )]
\(=\frac{4^3.\left(4^{14}+1\right)}{4^2.\left(4^{14}+1\right)}=\frac{4^3}{4^2}=4\)