Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+...+\dfrac{4}{2014\cdot2017}\)
\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2014\cdot2017}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2014}-\dfrac{1}{2017}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{2017}\right)=\dfrac{4}{3}\cdot\dfrac{2016}{2017}=\dfrac{8064}{6051}\)
Ta có : B = \(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+......+\frac{4}{2014.2017}\)
\(=\frac{4}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{2014.2017}\right)\)
\(=\frac{4}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(=\frac{4}{3}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{4}{3}.\frac{2016}{2017}=\frac{2688}{2017}\)
Sửa đề : \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{42}{43}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(2A=\frac{1}{1}-\frac{1}{100}\)
\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)
Câu B và C làm tương tự.
bạn Nhi làm sai rồi
\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được
\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)
kết quả là : \(\frac{49}{100}\)
=2/3(3/1*4+3/4*7+...+3/97*100)
=2/3(1-1/4+1/4-1/7+...+1/97-1/100)
=2/3*99/100
=198/300
=66/100
=33/50
Có A=\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+.........+\frac{4}{67.70}\)
A=\(\frac{4}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+............+\frac{3}{67.70}\right)\)
A=\(\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-..........-\frac{1}{70}\right)\)
A=\(\frac{4}{3}.\left(1-\frac{1}{70}\right)\)
A=\(\frac{4}{3}.\frac{69}{70}=\frac{46}{35}\)
Vì \(\frac{46}{35}>\frac{9}{7}\) nên A>\(\frac{9}{7}\)
\(A=\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{70}\right)\)
\(A=\frac{4}{3}.\left(1-\frac{1}{70}\right)=\frac{4}{3}\cdot\frac{69}{70}=\frac{46}{35}>\frac{9}{7}\)
Vậy A >9/7
\(B=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{100.103}+\dfrac{4}{103.106}\)
\(B=4\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}+\dfrac{1}{103.106}\right)\)
\(B=\dfrac{4}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}+\dfrac{3}{103.106}\right)\)
\(B=\dfrac{4}{3}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}+\dfrac{1}{103}-\dfrac{1}{106}\right)\)
\(B=\dfrac{4}{3}\left(\dfrac{1}{3}-\dfrac{1}{106}\right)\)
\(B=\dfrac{4}{3}.\dfrac{103}{318}\)
\(B=\dfrac{412}{954}\)
Tính nhanh:
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}\)
\(=\frac{42}{43}\)
Tìm x:
a) \(x+30\%x=-1,3\)
\(\Leftrightarrow x\left(1+30\%\right)=-1,3\)
\(\Leftrightarrow x\left(1+\frac{3}{10}\right)=\frac{-13}{10}\)
\(\Leftrightarrow x.\frac{13}{10}=\frac{-13}{10}\)
\(\Leftrightarrow x=\frac{-13}{10}:\frac{13}{10}=\frac{-13}{10}.\frac{10}{13}=-1\)
Vậy \(x=-1\)
b) \(\left|2x-1\right|=\left(-4\right)^2\)
\(\Leftrightarrow\left|2x-1\right|=16\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=16\\2x-1=-16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{17}{2}\\x=\frac{-15}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{17}{2};\frac{-15}{2}\right\}\)
\(\frac{3A}{4}=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{25.28}.\)
\(\frac{3A}{4}=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{28-25}{25.28}\)
\(\frac{3A}{4}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}=1-\frac{1}{28}=\frac{27}{28}\)
\(A=\frac{27.4}{28.3}=\frac{9}{7}\)
Bạn làm đúng rồi.