\(T\overrightarrow{v}\)biết 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2021

Đặt \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=5\) (1)

Đường thẳng d nhận \(\left(3;-4\right)\) là 1 vtpt nên cũng nhận \(\overrightarrow{u}=\left(4;3\right)\) là 1 vtcp

\(sin\alpha=\dfrac{2}{\sqrt{5}}\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\dfrac{1}{\sqrt{5}}\)

\(\Rightarrow\dfrac{\left|a.4+b.3\right|}{\sqrt{a^2+b^2}.\sqrt{4^2+3^2}}=\dfrac{1}{\sqrt{5}}\Leftrightarrow\left|4a+3b\right|=5\) (2)

Từ (1) và (2) ta được hệ: \(\left\{{}\begin{matrix}a^2+b^2=5\\\left|4a+3b\right|=5\end{matrix}\right.\)

Phá trị tuyệt đối, sử dụng phép thế để giải hệ ta được:

\(\left(a;b\right)=\left(-2;1\right);\left(\dfrac{2}{5};-\dfrac{11}{5}\right);\left(2;-1\right);\left(-\dfrac{2}{5};\dfrac{11}{5}\right)\)

Tổng cộng có 4 vecto \(\overrightarrow{v}\) thỏa mãn 

Tới đây bạn tự làm nốt phần tìm ảnh của d nhé

23 tháng 6 2021

Em cảm ơn thầy ạ!! ^^

1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\) 2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu? 3. Cho 3 đường thẳng...
Đọc tiếp

1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\)

2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu?

3. Cho 3 đường thẳng d:2x+y+3=0, d':2x+y-1=0. Có bao nhiêu vecto \(\overrightarrow{v}\)có độ dàu bằng 2 sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\)biến d thành d'

4. Cho 2 đường thẳng d; x+y+3=0, d':x+y+m=0. Biết có duy nhất một vecto \(\overrightarrow{v}\)có độ dài bằng \(\sqrt{2}\) sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến d thành d'. Tìm m

4
NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

10 tháng 6 2017

giống hệt đáp ánhum

31 tháng 3 2017

Lấy M tùy ý. Gọi {D_{d}}^{}(M) = M', {D_{d'}}^{} (M') = M''. Ta có
\(\overrightarrow{MM'}=\overrightarrow{MM'}+\overrightarrow{M'M''}=2\overrightarrow{M_oM'}+2\overrightarrow{M'M_1}=2\overrightarrow{M_oM_1}\)\(=2\dfrac{\overrightarrow{v}}{2}=\overrightarrow{v}\).

Vậy M'' = (M) = {D_{d'}}^{} ({D_{d}}^{}(M)), với mọi M

Do đó phép tịnh tiến theo vectơ v là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d'.

NV
30 tháng 9 2020

Lấy điểm M bao nhiêu cũng được nhưng với điều kiện thay vào pt d phải thỏa mãn

Ví dụ bài này lấy M(0;1) thay vào d: 3.0+5.1+3=0 (sai)

Nên lấy như vậy giải kết quả cũng sẽ sai

NV
29 tháng 9 2020

Chắc pt d là \(3x+5y+3=0\) ?

Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=2\) (1)

Gọi \(M\left(-1;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=-1+a\\y_{M'}=b\end{matrix}\right.\) thay vào pt (d') ta được:

\(3\left(-1+a\right)+5b-5=0\)

\(\Leftrightarrow b=\frac{8-3a}{5}\)

Thế vào (1): \(a^2+\left(\frac{8-3a}{5}\right)^2=2\)

\(\Leftrightarrow34a^2-48a+14=0\Rightarrow\left[{}\begin{matrix}a=1\Rightarrow b=1\\a=\frac{7}{17}\Rightarrow b=\frac{23}{17}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}\overrightarrow{v}=\left(1;1\right)\\\overrightarrow{v}=\left(\frac{7}{17};\frac{23}{17}\right)\end{matrix}\right.\)

NV
19 tháng 8 2020

d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(3x+4y+c=0\)

Gọi \(A\left(0;-\frac{5}{4}\right)\) là 1 điểm thuộc d, A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có \(A'\left(1;-\frac{17}{4}\right)\) mà A' thuộc d'

\(\Rightarrow3.1+4.\left(-\frac{17}{4}\right)+c=0\Rightarrow c=14\)

Phương trình d': \(3x+4y+14=0\)

\(d\left(d;d'\right)=d\left(A;d'\right)=\frac{\left|0+4\left(-\frac{17}{4}\right)+14\right|}{\sqrt{3^2+4^2}}=\frac{3}{5}\)

19 tháng 8 2020

thanks bn nhiu nhesss!!!!

6 tháng 6 2018

\(\overrightarrow{W}\) có giá vuông góc với đường thẳng \(d\) nên ta đặc \(\overrightarrow{W}\left(2k;-3k\right)\)

theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+2k\\y'=y-3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=x'-2k\\y=y'+3k\end{matrix}\right.\)

\(\Rightarrow2\left(x'-2k\right)-3\left(y+3k\right)+3=0\)

\(\Leftrightarrow2x'-4k-3y'-9k+3=0\Leftrightarrow2x'-3y'-13k+3\left(1\right)\)

để \(\left(1\right)\) là đường thẳng \(d\) thì : \(-13k+3=-5\Leftrightarrow k=\dfrac{8}{13}\)

\(\Rightarrow\overrightarrow{W}\left(\dfrac{16}{13};-\dfrac{24}{13}\right)\) vậy \(\overrightarrow{W}\left(\dfrac{16}{13};-\dfrac{24}{13}\right)\)

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

9 tháng 8 2017

Gọi M′ ( x′ ; y′ ) ∈ d' là ảnh của M( x , y ) ∈ d qua phép tịnh tiến theo vecto ⃗v (2;3)

\(\Rightarrow\left\{{}\begin{matrix}x'=x+2\\y'=y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-3\end{matrix}\right.\)

do M (x' ; y') \(\in\) d nên

\(3x-5y+3=0\)

\(\Rightarrow3\left(x'-2\right)-5\left(y'-3\right)+3=0\)

\(\Leftrightarrow3x'-5y'+12=0\left(d'\right)\)

vậy \(M'\left(x';y'\right)\in d':3x'-5y'+12=0\)