Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nen \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN và ΔACB có
AM/AC=AN/AB
góc MAN chung
Do đó: ΔAMN đồng dạng với ΔACB
b: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=BC:\dfrac{BC}{AH}=AH\)
a,DoΔvuông AHC có:
AH2=AE.AC (1)
Δ vuông AHB có:
AH2=AD.AB (2)
Từ (1) và (2) :
AE.AC =AD.AB
b, Xest ΔAED và ΔABC có:
BAC^chung
AE.AC=AD.AB (câu a)
=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)
a) ΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
câu b) bn tự làm nhé
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
Hình tự vẽ
a) ΔΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
b) ΔΔAHB vuông tại H có đường cao HD
=> 1HD2=1AH2+1BH21HD2=1AH2+1BH2 (Hệ thức lượng trong tam giác vuông) (3)
ΔΔAHC vuông tại H có đường cao HE
=> 1HE2=1AH2+1HC21HE2=1AH2+1HC2 (Hệ thức lượng trong tam giác vuông) (4)
Từ (3) và (4) => 1HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB21HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB2
c) Kẻ đường cao CM
Xét ΔΔABH và ΔΔCBM có:
ˆAHB=ˆCMB(=90o)AHB^=CMB^(=90o)
Chung ˆABCABC^
=> ΔΔABH ~ ΔΔCBM (g.g)
=> AHAD=BCCMAHAD=BCCM
=> AH.CM = BC.AD (*)
Vì AD.AB = AE.AC (cmt)
=> ADAC=AEABADAC=AEAB
Xét ΔΔADE và ΔΔACB có:
ADAC=AEABADAC=AEAB
Chung ˆBACBAC^
=> ΔΔADE ~ ΔΔACB (c.g.c)
=> DEBC=ADACDEBC=ADAC
=> DE.AC = BC.AD (**)
Từ (*) và (**) => AH.CM = DE.AC
=> DE=AH.CMACDE=AH.CMAC(I)
ΔΔACM vuông tại M => sinA=CMACsinA=CMAC (II)
Từ (I) và (II) => DE = AH.sin A