\(AE.AC=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

Hình tự vẽ

a) ΔΔABH vuông tại H có đường cao HD

=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)

ΔΔAHC vuông tại H có đường cao HE

=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)

Từ (1) và (2) => AD.AB = AE.AC (=AH2)

b) ΔΔAHB vuông tại H có đường cao HD

=> 1HD2=1AH2+1BH21HD2=1AH2+1BH2 (Hệ thức lượng trong tam giác vuông) (3)

ΔΔAHC vuông tại H có đường cao HE

=> 1HE2=1AH2+1HC21HE2=1AH2+1HC2 (Hệ thức lượng trong tam giác vuông) (4)

Từ (3) và (4) => 1HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB21HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB2

c) Kẻ đường cao CM

Xét ΔΔABH và ΔΔCBM có:

ˆAHB=ˆCMB(=90o)AHB^=CMB^(=90o)

Chung ˆABCABC^

=> ΔΔABH ~ ΔΔCBM (g.g)

=> AHAD=BCCMAHAD=BCCM

=> AH.CM = BC.AD (*)

Vì AD.AB = AE.AC (cmt)

=> ADAC=AEABADAC=AEAB

Xét ΔΔADE và ΔΔACB có:

ADAC=AEABADAC=AEAB

Chung ˆBACBAC^

=> ΔΔADE ~ ΔΔACB (c.g.c)

=> DEBC=ADACDEBC=ADAC

=> DE.AC = BC.AD (**)

Từ (*) và (**) => AH.CM = DE.AC

=> DE=AH.CMACDE=AH.CMAC(I)

ΔΔACM vuông tại M => sinA=CMACsin⁡A=CMAC (II)

Từ (I) và (II) => DE = AH.sin A

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nen \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN và ΔACB có

AM/AC=AN/AB

góc MAN chung

Do đó: ΔAMN đồng dạng với ΔACB

b: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC:\dfrac{BC}{AH}=AH\)

a,DoΔvuông AHC có:

AH2=AE.AC (1)

Δ vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest ΔAED và ΔABC có:

BAC^chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

17 tháng 9 2021

a) ΔABH vuông tại H có đường cao HD

=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)

ΔAHC vuông tại H có đường cao HE

=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)

Từ (1) và (2) => AD.AB = AE.AC (=AH2)

câu b) bn tự làm nhé

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm