Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
Xét tam giác BOD và tam giác COD có
BD=CD (Hai tiếp tuyến cùng xp từ 1 điểm)
OD chung
OB=OC (bán kính (O))
=> tg BOD = tg COD (c.c.c) => ^DOC = ^DOB (1)
Gọi K là giao của OD với (O) ta có
sđ ^BOD = sđ cung BK; sđ ^COD = sđ cung CK (2)
Từ (1) và (2) => sđ cung BK = sđ cung CK mà sđ cung BK + sđ cung CK = sđ cung BKC => sđ cung BK = sđ cung CK = 1/2 sđ cung BKC (3)
Ta có sđ ^BAC = 1/2 sđ cung BKC (góc nội tiếp) (4)
Từ (2) (3) (4) => ^BAC = ^DOC (dpcm)
Câu 2:
Ta có sđ ^DBC = 1/2 sđ cung BKC (góc giữa tiếp tuyến và dây cung)
sđ ^BAC = 1/2 sđ cung BKC
=> ^BAC = ^DBC (1)
AB//DF => ^BAC = ^DIC (góc đồng vị) (2)
Từ (1) và (2) => ^DBC = ^DIC => B và I cùng nhìn DC dưới hai góc băng nhau => B; D; C; I cùng nawmg trên 1 ffwowngf tròn => tứ giác BDCI nội tiếp
Câu 3:
Ta có
sđ ^COD = sđ cung CK = 1/2 sđ cung BKC (cmt)
sđ ^BAC = 1/2 sđ cung BKC
=> ^COD = ^BAC
mà ^BAC = ^DIC (cmt)
=> ^COD = ^DIC => O và I cùng nhìn CD dưới 2 góc bằng nhau => tứ giác CDOI nội tiếp (1)
Ta có sđ ^OCD = 90 = 1/2 sđ cung OD (góc nội tiếp), mà sđ ^OID = 1/2 sđ cung OD (góc nội tiếp) => ^OID = ^OCD = 90 => IO vuông góc EF => I thuộc đường tròn đường kính OD
Câu 4:
Ta có B; O; C cố định => D cố định => đường tròn đường kính OD cố định
Mà I thuộc đường tròn đường kính OD cố định
=> Khi A chuyển động trên cung BC thì I di chuyển trên đường tròn đường kính OD
toi ban ca nick voi gia 200 dong . ban nao mua thi mua cac 200 roi toi dua cho toi vi so cuop nick . dua truoc di vi nick nay cuc vip . co rpk svip vv,diablo vv,nepan vip vv,de vip vv. neu ko mua thi thoi. good bye
a: ΔCOD vuông tại O
=>\(CO^2+OD^2=CD^2\)
=>\(CD^2=\left(3R\right)^2+R^2=10R^2\)
=>\(CD=R\sqrt{10}\)
b: Xét (O) có A,B,E,D cùng thuộc đường tròn
nên ABED là tứ giác nội tiếp
=>\(\widehat{EAB}+\widehat{EDB}=180^0\)
mà \(\widehat{EAB}+\widehat{CAE}=180^0\)
nên \(\widehat{CAE}=\widehat{CDB}\)
Xét ΔCAE và ΔCDB có
\(\widehat{CAE}=\widehat{CDB}\)
\(\widehat{ECA}\) chung
Do đó: ΔCAE đồng dạng với ΔCDB
=>\(\dfrac{CA}{CD}=\dfrac{CE}{CB}\)
=>\(CA\cdot CB=CD\cdot CE\)
ý bạn chơi đểu người trả lời à
có phải là ba rét không ba
chuan cmm