Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
l/ $6x^2(x-1)-9x(x-1)\\=(6x^2-9)(x-1)\\=3(2x^2-3)(x-1)\\=3(\sqrt2 x-\sqrt 3)(\sqrt 2 x+\sqrt 3)(x-1)$
m/ $4x^2(x-2)+9x(2-x)\\=4x^2(x-2)-9x(x-2)\\=(4x^2-9x)(x-2)\\=x(4x-9)(x-2)$
n/ $4x^2y-4xy+y\\=y(4x^2-4x+1)\\=y(2x-1)^2$
o/ $3x(2x-3y)-6(3y-2x)\\=3x(2x-3y)+6(2x-3y)\\=(3x+6)(2x-3y)\\=3(x+2)(2x-3y)$
p/ $4x^2(x-1)+(1-x)\\=4x^2(x-1)-(x-1)\\=(4x^2-1)(x-1)\\=(2x-1)(2x+1)(x-1)$
l)\(6x^2\left(x-1\right)-9x\left(x-1\right)=3x\left(x-1\right)\left(2x-3\right)\)
m) \(4x^2\left(x-2\right)+9x\left(2-x\right)=4x^2\left(x-2\right)-9x\left(x-2\right)=x\left(x-2\right)\left(4x-9\right)\)
n) \(4x^2y-4xy+y=y\left(4x^2-4x+1\right)=y\left(2x-1\right)^2\)
o) \(3x\left(2x-3y\right)-6\left(3y-2x\right)=3x\left(2x-3y\right)+6\left(2x-3y\right)=3\left(2x-3y\right)\left(x+2\right)\)
p) \(4x^2\left(x-1\right)+\left(1-x\right)=4x^2\left(x-1\right)-\left(x-1\right)=\left(4x^2-1\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\left(x-1\right)\)
\(a,P=\left(5x^2-2xy+y^2\right)-\left(x^2+y^2\right)-\left(4x^2-5xy+1\right)\\ =5x^2-2xy+y^2-x^2-y^2-4x^2+5xy-1\\ =\left(5x^2-x^2-4x^2\right)+\left(y^2-y^2\right)+\left(-2xy+5xy\right)-1\\ =3xy-1\)
\(x+y=6,2\\ \Rightarrow y=6,2-1,2=5\)
Thay \(x=1,2;y=5\)
\(\Rightarrow3.5.1,2-1=17\)
`P = 5x^2 - x^2 - 4x^2 - 2xy + 5xy + y^2 - y^2 - 1`
`= 3xy - 1`
Thay `x = 1,2; y = 6,2 - 1,2 = 5` vào
`3 xx 1,2 xx 5-1 = 18 - 1 = 17`
a, \(15^4-12x^3+9x^2\)
b,\(-15x^3y^2+25x^2y^2-5xy^3\)
c, \(5x^3-19x^2+12x\)
d,
x3+xy2+5x2y−9x2y−3y3−15xy2=3x3−3y3−14xy2−4x2y
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2=3x^3-14xy^2-4x^2y-3y^3\)
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2\\ =3x^3-3y^3-14xy^2-4x^2y\)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
Bài 1:
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3-9x^2y+xy^2-3y^3+5x^2y-15xy^2=3x^3-3y^3-4x^2y-14xy^2\)
Bài 2:
\(a,=x^2+4x-21-x^2-4x+5=-16\\ b,=x^2+16x+64-2x^2-12x+32+x^2-4x+4=100\\ c,=x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
\(\dfrac{4x +2}{15x^3y}\) + \(\dfrac{5y-3}{9x^2y}\) + \(\dfrac{x +1}{5xy^3}\)
=\(\dfrac{\left(4x+2\right)\cdot3y^2}{45x^3y^3}\) + \(\dfrac{\left(5y-3\right)\cdot5xy^2}{45x^3y^3}\) + \(\dfrac{\left(x+1\right)\cdot9x^2}{45x^3y^3}\)
=\(\dfrac{12xy^2+6y^2+25xy^3-15xy^2+9x^3+9x^2}{45x^3y^3}\)
=\(\dfrac{9x^3+9x^2+25xy^3-3xy^2+6y^2}{45x^3y^3}\)
-3y2z x ( 3y + 4x2 - 5xy +1 )
= [(-3y\(^2\)zx) . 3y] + [-3y2z x).4 x\(^2\)] + [-3y2z x . (-5xy)] + [(-3y2z x ). 1]
= -9y\(^3\)zx - 12 y\(^2\)zx\(^3\) + 15y\(^3\)zx\(^2\) -3y2z x
phân tích thành nhân tử
3xy^2(5xy-3y-4x^2-1)z