K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1: |3x|=3 và |y+5|=1

=>\(\left\{{}\begin{matrix}\left|x\right|=1\\y+5\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{1;-1\right\}\\y\in\left\{-4;-6\right\}\end{matrix}\right.\)

TH2: |3x|=0 và |y+5|=4

=>\(\left\{{}\begin{matrix}x=0\\y\in\left\{-1;-9\right\}\end{matrix}\right.\)

18 tháng 11 2017

Ta có: \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\ge0\)với \(\forall x;y;z\)

Mà \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\le0\)

\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}=0\)

\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-5}{2}\\x=\frac{3}{4}\end{cases}}}\)

Vậy \(x=\frac{5}{3};y=\frac{-2}{5};z=\frac{3}{4}\)

29 tháng 9 2019

a, 2I3xI+Iy+3I=10 <=>6IxI+Iy+3I=10

vì 6IxI<=10 =>IxI<=10/6 <=>IxI<=1 => x=1;-1;0

x=1 hoặc x=-1=>Iy+3I=4 =>y=1 hoặc -7

x=0 => Iy+3I=10=>y=7 hoặc -13

b, Tương tự 12IxI<=21=>IxI<=21/12 =>IxI=1

x=1 hoặc -1 =>y=6 hoặc -12

x=0 => y= 18 hoặc -24

c, Tương tự I2x+1I<=3 <=> -3<= 2x+1<=3 <=>-4<= 2x<= 2 <=>-2<= x <=1

x=-2 hoặc 1=>Iy-4I=0 => y=4

x=-1 hoặc 0 =>Iy-4I=2 =>y=6 hoặc 2

d,2y^2+I2x+1I=5

tương tự 2y^2<=5 =>y^2<=5/2 <=>y^2<=2 =>y^2=1 hoặc 0

y^2=0 =>y=o thì I2x+1I=5 => x=2 hoặc -3

y^2=1 => y= 1 hoặc -1 thì I2x+1I=3 =>x =1 hoặc -2

28 tháng 10 2021

la

28 tháng 10 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)

10 tháng 12 2015

(2x - 5)2000 + (3y + 4)2002

ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0

=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0

Dấu "=" xảy ra khi 2x - 5 = 0  và 3y + 4 = 0

=> 2x = 5 và 3y = -4

=> x = 2,5 và y = \(\frac{-4}{3}\)

28 tháng 8 2020

bé hơn mà có phải lớn hơn 0 đâu ?

13 tháng 11 2018

\(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\le0\)

ta có:

\(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+8\right)^{20}\ge0\\\left(4z-3\right)^{2018}\ge0\end{cases}}\Rightarrow\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\ge0\)

mà \(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\le0\)=> \(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}=0\)

=> \(\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+8\right)^{20}=0\\\left(4z-3\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-4\\z=\frac{4}{3}\end{cases}}\)

vậy \(x=\frac{5}{3},y=-4,z=\frac{4}{3}\)

13 tháng 11 2018

bạn nên có một bước giải thích vì sao 

(2y+8)\(\ge0\)

\(|3x-5|\ge0\)

\((4z-3)\ge0\)