Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
Lời giải:
Câu 1:
\(5^{2x}=3^{2x}+2.5^x+2.3^x\)
\(\Leftrightarrow 5^{2x}-2.5^x+1=3^{2x}+2.3^x+1\)
\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)
\(\Leftrightarrow (5^x-1-3^x-1)(5^x-1+3^x+1)=0\)
\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)
Vì \(3^x,5^x>0\Rightarrow 3^x+5^x>0\), do đó từ pt trên ta có \(5^x-3^x=2\)
\(\Leftrightarrow 5^x=3^x+2\)
TH1: \(x>1\)
\(\Rightarrow 5^x=3^x+2< 3^x+2^x\)
\(\Leftrightarrow 1< \left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì bản thân \(\frac{2}{5},\frac{3}{5}<1\), và \(x>1\Rightarrow \left(\frac{2}{5}\right)^x< \frac{2}{5};\left(\frac{3}{5}\right)^x<\frac{3}{5}\)
\(\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\) (vô lý)
TH2: \(x<1 \Rightarrow 5^x=3^x+2> 3^x+2^x\)
\(\Leftrightarrow 1>\left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì \(\frac{2}{5};\frac{3}{5}<1; x<1\Rightarrow \left(\frac{3}{5}\right)^x> \frac{3}{5}; \left(\frac{2}{5}\right)^x>\frac{2}{5}\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)
(vô lý)
Vậy \(x=1\)
Câu 2:
Ta có \(1+6.2^x+3.5^x=10^x\)
\(\Leftrightarrow \frac{1}{10^x}+6.\frac{1}{5^x}+3.\frac{1}{2^x}=1\)
\(\Leftrightarrow 10^{-x}+6.5^{-x}+3.2^{-x}=1\)
Ta thấy, đạo hàm vế trái là một giá trị âm, vế phải là hàm hằng có đạo hàm bằng 0, do đó pt có nghiệm duy nhất.
Thấy \(x=2\) thỏa mãn nên nghiệm duy nhất của pt là x=2
Câu 3:
\(6(\sqrt{5}+1)^x-2(\sqrt{5}-1)^x=2^{x+2}\)
Đặt \(\sqrt{5}+1=a\), khi đó sử dụng định lý Viete đảo ta duy ra a là nghiệm của phương trình \(a^2-2a-4=0\)
Mặt khác, từ pt ban đầu suy ra \(6.a^x-2\left(\frac{4}{a}\right)^x=2^{x+2}\)
\(\Leftrightarrow 6.a^{2x}-2^{x+2}a^x-2^{2x+1}=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^{2x}-2^{2x})=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^x-2^x)(a^x+2^x)=0\)
\(\Leftrightarrow (a^x-2^x)(6a^x+2^{x+1})=0\)
Dễ thấy \(6a^x+2^{x+1}>0\forall x\in\mathbb{R}\Rightarrow a^x-2^x=0\)
\(\Leftrightarrow (\sqrt{5}+1)^x=2^x\Leftrightarrow x=0\)
19.
\(\overline{z}=1-3i\)
\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)
Phần ảo bằng -7
20.
Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)
Biểu diễn trên mặt phẳng phức: \(z=2+i\)
21.
Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?
\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)
\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)
15.
Diện tích thiết diện:
\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)
Thể tích:
\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)
16.
\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)
17.
\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)
18.
\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)
\(\Rightarrow\) phần thực bằng 5
Vì 6<32
Do đó 3<x
x>1