K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

b: \(\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\)

c: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=5x^3+14x^2+12x+8\)

1: \(=\dfrac{-\left[\left(x+5\right)^2-9\right]}{\left(x+2\right)^2}=\dfrac{-\left(x+5-3\right)\left(x+5+3\right)}{\left(x+2\right)^2}\)

\(=\dfrac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+8\right)}{x+2}\)

2: \(=\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\dfrac{2x}{x+4}\)

3: \(=\dfrac{5x\left(x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{5x}{x^2-1}\)

4: \(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

5: \(=\dfrac{2a\left(a-b\right)}{a\left(c+d\right)-b\left(c+d\right)}=\dfrac{2a\left(a-b\right)}{\left(c+d\right)\left(a-b\right)}=\dfrac{2a}{c+d}\)

6: \(=\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\cdot\left(-1\right)=\dfrac{-x}{x+y}\)

7: \(=\dfrac{2\left(1-a\right)}{-\left(1-a^3\right)}=\dfrac{-2\left(1-a\right)}{\left(1-a\right)\left(1+a+a^2\right)}=-\dfrac{2}{1+a+a^2}\)

8: \(=\dfrac{x^4\left(x^3-1\right)}{\left(x^3-1\right)\left(x^3+1\right)}=\dfrac{x^4}{x^3+1}\)

9: \(=\dfrac{\left(x+2-x+2\right)\left(x+2+x-2\right)}{16x}=\dfrac{4\cdot2x}{16x}=\dfrac{1}{2}\)

10: \(=\dfrac{0.5\left(49x^2-y^2\right)}{0.5x\left(7x-y\right)}=\dfrac{1}{x}\cdot\dfrac{\left(7x-y\right)\left(7x+y\right)}{7x-y}\)

\(=\dfrac{7x+y}{x}\)

 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

a: \(=\dfrac{x^3\left(2x-1\right)+2\left(2x-1\right)}{2x-1}=x^3+2\)

b: \(=\dfrac{2x^3-4x^2+3x^2-6x+x-2}{x-2}=2x^2+3x+1\)

d: \(=\dfrac{x^4-2x^3+3x^2+2x^3-4x^2+6x-x^2+2x-3}{x^2-2x+3}=x^2+2x-1\)

18 tháng 10 2021

a: Ta có: \(-\left(-3x^2\right)^3+4x-9-27x^6\)

\(=27x^6-27x^6+4x-9\)

=4x-9

=-1

27 tháng 10 2021

a: \(=\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=x^2+2x-5\)

b: \(=\dfrac{x^3-2x^2-x^2+2x+3x-6}{x-2}=x^2-x+3\)

12 tháng 8 2023

a) \(\left(2x^3-x^2+5x\right):x\)

\(=\dfrac{2x^3-x^2+5x}{x}\)

\(=\dfrac{x\left(2x^2-x+5\right)}{x}\)

\(=2x^2-x+5\)

b) \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)

\(=\dfrac{3x^4-2x^3+x^2}{-2x}\)

\(=\dfrac{2x\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)}{-2x}\)

\(=-\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)\)

\(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)

c) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)

\(=\dfrac{-2x^5+3x^2-4x^3}{2x^2}\)

\(=\dfrac{2x^2\left(-x^3+\dfrac{3}{2}-2x\right)}{2x^2}\)

\(=-x^3-2x+\dfrac{3}{2}\)

12 tháng 8 2023

d) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)

\(=\dfrac{x^3-2x^2y+3xy^2}{-\dfrac{1}{2}x}\)

\(=\dfrac{\dfrac{1}{2}x\left(2x^2-4xy+6y^2\right)}{-\dfrac{1}{2}x}\)

\(=-\left(2x^2-4xy+6y^2\right)\)

\(=-2x^2+4xy-6y^2\)

e) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)

\(=\dfrac{3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2}{5\left(x-y\right)^2}\)

\(=\dfrac{5\left(x-y\right)^2\left[\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\right]}{5\left(x-y\right)^2}\)

\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)

f) \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2\)

\(=\dfrac{3x^5y^2+4x^3y^3-5x^2y^4}{2x^2y^2}\)

\(=\dfrac{2x^2y^2\left(\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\right)}{2x^2y^2}\)

\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)