![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình đang cần gấp câu trả lời ,bạn nào giải được nhanh k luôn ,hứa đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
1) |x + 2| = 4
\(\Leftrightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
2) 3 – |2x + 1| = (-5)
\(\Leftrightarrow\left|2x+1\right|=8\Leftrightarrow\orbr{\begin{cases}2x+1=8\\2x+1=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-9}{2}\end{cases}}\)
3) 12 + |3 – x| = 9
\(\Leftrightarrow\left|3-x\right|=-3\)(vô lí)
=>\(x=\varnothing\)
1) I x+2 I=4
\(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}}\)
2) \(3-|2x+1|=-5\)
\(\Leftrightarrow|2x+1|=8\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=8\\2x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-9}{2}\end{cases}}}\)
3) \(12+|3-x|=9\)
\(\Leftrightarrow|3-x|=-3\)(vô lí vì I 3-x I \(\ge\)0)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\in\left(\infty;-\infty\right)\)
\(\frac{19x+50}{14}=\frac{9}{1}\Rightarrow\left(19x+50\right)1=14.9\)
\(\frac{\left(19x+50\right)1}{19x}=\frac{14.9}{19x}\)
\(\frac{19x+50}{19x}=\frac{14.19}{19x}\)
\(\Rightarrow x=4\)
a, \(\left(19.x+2.5^2\right)\div14=\left(13-8\right)^2-4^2\)
\(\left(19.x+2.25\right)\div14=5^2-4^2\)
\(\left(19.x+2.25\right)\div14=25-16\)
\(\left(19.x+50\right)\div14=9\)
\(\left(19.x+50\right)=9.14\)
\(19.x+50=126\)
\(19.x=126-50\)
\(19.x=76\)
\(\Rightarrow x=76\div19\)
\(\Rightarrow x=4\)
Vậy x = 4
b, \(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=10.3^{12}+8.\left(3^3\right)^4\)
\(2.3^x=10.3^{12}+8.3^{12}\)
\(2.3^x=\left(10+8\right).3^{12}\)
\(2.3^x=18.3^{12}\)
\(2.3^x=2.3^3.3^{12}\)
\(2.3^x=2.3^{15}\)
\(\Rightarrow x=15\)
Vậy x = 15
![](https://rs.olm.vn/images/avt/0.png?1311)
( -3/2 : 3/-4 ) . ( -4 - 9/20 ) - 1/4 < x/8 < -1/2 . 3/4 : 1/8 + 1
=>2.(-89)/20-1/4<x/8<-3+1
=>(-89)/10-1/4<x/8<-2
=>-203/20<x/8<-2
=>-406/40<5x/40<-80/40
=>-406<5x<-80
=>-406:5<x<-80:5
=>-81,2<x<-16
Vì x thuộc Z
=>81,2<-81<x<-16
=>\(x\in\left\{-81;-80;-79;...;-17;-16\right\}.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Bài giải
\(-2\left(-3-4x\right)-3\left(3x-7\right)=31\)
\(6+8x-9x-21=31\)
\(-x-15=31\)
\(-x=31+15\)
\(-x=46\)
\(x=-46\)
b, \(10\left(x-7\right)=8\left(x-4\right)+x\)
\(10x-70=8x-32+x\)
\(10x-70=9x-32\)
\(10x-9x=-32+70\)
\(x=38\)
c, \(2\left|x-1\right|=3\cdot\left(5-1\right)\)
\(2\left|x-1\right|=15-3\)
\(2\left|x-1\right|=12\)
\(\left|x-1\right|=12\text{ : }2\)
\(\left|x-1\right|=6\)
\(\Rightarrow\orbr{\begin{cases}x-1=-6\\x-1=6\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=7\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-5\text{ ; }7\right\}\)
d, \(2\left(x+3\right)-2\left(x-3\right)=x\)
\(2\left(x+3-x-3\right)=x\)
\(2\cdot0=x\)
\(x=0\)
e, \(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-3\text{ ; }4\right\}\)
a, \(-2\left(-3-4x\right)-3\left(3x-7\right)=31\)
\(6+8x-9x-21=31\)
\(-x-15=31\)
\(-x=31+15\)
\(-x=46\)
\(x=-46\)
b, \(10\left(x-7\right)=8\left(x-4\right)+x\)
\(10x-70=8x-32+x\)
\(10x-70=9x-32\)
\(10x-9x=-32+70\)
\(x=38\)
c, \(2\left|x-1\right|=3\cdot\left(5-1\right)\)
\(2\left|x-1\right|=15-3\)
\(2\left|x-1\right|=12\)
\(\left|x-1\right|=12\text{ : }2\)
\(\left|x-1\right|=6\)
\(\Rightarrow\orbr{\begin{cases}x-1=-6\\x-1=6\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=7\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-5\text{ ; }7\right\}\)
d, \(2\left(x+3\right)-2\left(x-3\right)=x\)
\(2\left(x+3-x-3\right)=x\)
\(2\cdot0=x\)
\(x=0\)
e, \(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-3\text{ ; }4\right\}\)