Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo bài, ta có:
9x2 - 6x + 2 + y2
= (9x2 - 6x + y2) + 2
= (3x - y)2 + 2
vì (3x - y)2 \(\ge0\forall x,y\in R\)
=> (3x - y)2 + 2 \(\ge\) 2 \(\forall\)x, y \(\in\) R
=> (3x - y)2 + 2 > 0
hay 9x2 - 6x + 2 + y2 > 0
b) làm t.tự
c) theo bài ta có:
A= 2x2 + 4x - 1
= 2(x2 + 2x + 1) - 3
= 2(x + 1)2 - 3
vì 2(x + 1)2\(\ge\) 0 \(\forall x\in R\)
=>2(x + 1)2 - 3 \(\ge\) -3 \(\forall x\in R\)
=> GTNN của A bằng -3
c) 5x2 - 6xy + y2
= (9x2 - 6xy + y2)- 4x2
= (3x - y)2 - 4x2
= (3x - y - 4x)(3x - y + 4x)
= -(x + y)(7x - y)
mik chỉ làm đc đến đây thôi, vì mik lười bấm máy lắm, nhưng có j ủng hộ mik nha
3x^2+5y^2-4xy-4x+4y+7=x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
=(x-2y)2+2(x2-2x+1)+(y+2)2+1
=(x+2y)2+2(x-1)2+(y+2)2+1\(\ge\)1(với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1>0 với mọi x,y
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :
Ta có : 3x^2+5y^2-4xy-4x+4y+7
= x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
= (x-2y)2+2(x2-2x+1)+(y+2)2+1
= (x+2y)2+2(x-1)2+(y+2)2+1 > 1 (với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1 >0 (với mọi x,y)
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
\(4x^2+5y^2-4xy+4y+1=0\)
\(\Leftrightarrow4x^2-4xy+y^2+4y^2+4y+1=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-y=0\\2y+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{4}\\y=\frac{-1}{2}\end{matrix}\right.\)
Potato Pear Sweet tìm được y rồi thì bạn thay vào \(2x-y=0\)để tìm x
3x2+5y2-4xy-4x+4y+7>0
<=>\(x^2+4y^2-4xy-4x^2-4x+1+2x^2+y^2+4y+4+2>0\)
<=>\(\left(x-2y\right)^2-\left(2x-1\right)^2+\left(y+2\right)^2+2x^2+2>0\)