K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

a)Thay m=2 vào  phương trình trên ta được:

\(3x^2+4\left(2-1\right)x-2^2=0\)

\(\Leftrightarrow3x^2+4x-4=0\)

\(\Leftrightarrow\left(x-\frac{2}{3}\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)

6 tháng 4 2019

giúp e câu b với :>

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

26 tháng 3 2019

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

26 tháng 3 2019

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)

Đề sai rồi bạn

23 tháng 2 2019

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

23 tháng 2 2019

ý b kìa ý a mình biết rồi

21 tháng 6 2021

a) \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)

\(\Delta'=m^2+2m+1+m^2-4m=2m^2-2m+1\)

\(\Delta'=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\)

=> pt luôn có 2 nghiệm phân biệt

b) Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)

Theo bài ra, ta có: A = |x1 - x2|

A2 = (x1 - x2)2 = (x1 + x2)2 - 4x1x2

A2 = [2(m + 1)]2 - 4(4m - m2)

A2 = 4m2 + 8m + 4 - 8m  + 4m2 = 8m2 + 4 \(\ge\)4 với mọi m

Dấu "=" xảy ra <=> m = 0

Vậy MinA = 4 khi m = 0

21 tháng 6 2021

a) Xét \(\Delta'=\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1=m^2+\left(m-1\right)^2>0\)với mọi m

Vậy pt trên luôn có 2 nghiệm phân biệt với mọi m

b) Gọi x1 ; x2 là 2 nghiệm của pt trên . Theo hệ thức Viet , ta có :

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)

Xét \(A^2=\left|x_1-x_2\right|^2=\left(x_1+x_2\right)^2-4x_1x_2=4\left(m+1\right)^2-4\left(4m-m^2\right)\)

\(=8m^2-8m+4=2\left(4m^2-4m+1\right)+2=2\left(2m-1\right)^2+2\ge2\)

Dấu " = " xảy ra khi 2m - 1 = 0

Vậy \(A^2\ge2\Leftrightarrow A=\left|x_1-x_2\right|\ge\sqrt{2}\)

Dấu " = " xảy ra khi \(m=\frac{1}{2}\)

Do đó minA \(=\sqrt{2}\)khi \(m=\frac{1}{2}\)