\(3x^2+3y^2+4xy-2x+2y+2=0\)

Phân tích rồi tìm x,y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2020

3x2 + 3y2 + 4xy - 2x + 2y + 2 = 0

<=> 2 ( x2 + 2xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) = 0

<=> 2 ( x + y )2 + ( x - 1 )2 + ( y + 1 )2 = 0 (*)

Vì ( x + y )2\(\ge\)0 ; ( x - 1 )2 \(\ge\)0 ; ( y + 1 )2\(\ge\)0 (\(\forall\)x;y )

=> 2 ( x + y )2 + ( x - 1 )2 + ( y + 1 )2 \(\ge\)0\(\forall\)x;y

(*) xảy ra <=>\(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\left(tm\right)\)

Vậy x = 1 ; y = - 1 tm đề bài

22 tháng 2 2020

\(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0\)\(\left(x+1\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)\(\forall x,y\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

Vậy \(x=-1\)và \(y=1\)

NV
22 tháng 2 2020

\(\Leftrightarrow9x^2+9y^2+12xy+6x-6y+6=0\)

\(\Leftrightarrow\left(9x^2+4y^2+1+12xy+6x+4y\right)+5\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(3x+2y+1\right)^2+5\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

29 tháng 6 2018

P = 3x2 - 2x + 3y2 - 2y + 6xy +2018

P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018

P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018

P = 3[ 52 +0] - 10 + 2018

P = 3.25 + 2008

P = 75 + 2008

P = 2083

14 tháng 2 2017

\(\frac{x}{y}+\frac{3y}{x}=4\) ta có \(Q=x^2+3y^2=4xy\Leftrightarrow\frac{x}{y}+\frac{3y}{x}=4\Leftrightarrow\left\{\begin{matrix}t=\frac{x}{y}\\t^2-4t+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}t=1\left(loai\right)\\t=3\left(nhan\right)\end{matrix}\right.\)

\(P=\frac{2t+5}{t-2}=\frac{2.3+5}{3-2}=10\)

14 tháng 2 2017

Ta có : \(x^2+3y^2=4xy=>x^2+3y^2-4xy=0=>x^2+4y^2-y^2-4xy=0\)\(=>\left(x-2y\right)^2-y^2=0=>\left(x-3y\right)\left(x-y\right)=0\)

=>x=3y hoặc x=y . Mà x>y>0=>\(x\ne y\)=> x=y(loại)

Trường hợp x=3y chọn

Thay x=3y vào biểu thức, ta có:

P=\(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)

30 tháng 9 2017

P = 3x2 - 2x + 3y2 - 2y + 6xy - 100

= (3x2 + 6xy + 3y2) - (2x + 2y) - 100

= 3(x2 + 2xy + y2) - 2(x + y) - 100

= 3(x + y)2 - 2.5 - 100

= 3. 52 -10 - 100

= 75 - 10 - 100 = -35

Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10

= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10

= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10

= (x + y)3 - 2(x2 + 2xy + y2) + 25

= 53 - 2(x + y)2 +25

= 125 - 2. 52 + 25

= 125 - 50 + 25 = 100

1 tháng 9 2019

\(a,x^2+y^2-x-y=8\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)

Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)

Để VP=0 và là các số nguyên 

=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)

1 tháng 9 2019

a/ x^2 + y^2 - x - y = 8

<=> 4x^2 + 4y^2 - 4x - 4y = 32

<=> (2x - 1)^2 + (2y - 1)^2 = 34

<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25

Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9

29 tháng 3 2017

\(x^2+3y^2-4xy=0\)

\(\Leftrightarrow\left(y-x\right)\left(3y-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=3y\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{2x+y}{x-2y}=\dfrac{2.3y+y}{3y-2y}=7\)