Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$45-5(x+4)=10$
$5(x+4)=45-10=35$
$x+4=35:5=7$
$x=7-4=3$
------------------------
$(7x-15):3-6=17$
$(7x-15):3=17+6=23$
$7x-15=23\times 3=69$
$7x=69+15=84$
$x=84:7=12$
------------------
$3^{x+2}-5.3^x=108$
$3^x(3^2-5)=108$
$3^x.4=108$
$3^x=108:4=27=3^3$
$\Rightarrow x=3$
\(45-5\left(x+4\right)=10\)
\(\Rightarrow5\left(x+4\right)=45-10\)
\(\Rightarrow5\left(x+4\right)=35\)
\(\Rightarrow x+4=35:5\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=7-4\)
\(\Rightarrow x=3\)
______________
\(\left(7x-15\right):3-6=17\)
\(\Rightarrow\left(7x-15\right):3=17+6\)
\(\Rightarrow\left(7x-15\right):3=23\)
\(\Rightarrow7x-15=23\cdot3\)
\(\Rightarrow7x-15=69\)
\(\Rightarrow7x=69+15\)
\(\Rightarrow7x=84\)
\(\Rightarrow x=12\)
______________
\(3^{x+2}-5\cdot3^x=108\)
\(\Rightarrow3^x\cdot\left(3^2-5\right)=108\)
\(\Rightarrow3^x\cdot\left(9-5\right)=108\)
\(\Rightarrow3^x\cdot4=108\)
\(\Rightarrow3^x=108:4\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
a: \(4x^3+12=120\)
=>\(4x^3=108\)
=>\(x^3=27=3^3\)
=>x=3
b: \(\left(x-4\right)^2=64\)
=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)
c: (x+1)^3-2=5^2
=>\(\left(x+1\right)^3=25+2=27\)
=>x+1=3
=>x=2
d: 136-(x+5)^2=100
=>(x+5)^2=36
=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)
e: \(4^x=16\)
=>\(4^x=4^2\)
=>x=2
f: \(7^x\cdot3-147=0\)
=>\(3\cdot7^x=147\)
=>\(7^x=49\)
=>x=2
g: \(2^{x+3}-15=17\)
=>\(2^{x+3}=32\)
=>x+3=5
=>x=2
h: \(5^{2x-4}\cdot4=10^2\)
=>\(5^{2x-4}=\dfrac{100}{4}=25\)
=>2x-4=2
=>2x=6
=>x=3
i: (32-4x)(7-x)=0
=>(4x-32)(x-7)=0
=>4(x-8)*(x-7)=0
=>(x-8)(x-7)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
k: (8-x)(10-2x)=0
=>(x-8)(x-5)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)
m: \(3^x+3^{x+1}=108\)
=>\(3^x+3^x\cdot3=108\)
=>\(4\cdot3^x=108\)
=>\(3^x=27\)
=>x=3
n: \(5^{x+2}+5^{x+1}=750\)
=>\(5^x\cdot25+5^x\cdot5=750\)
=>\(5^x\cdot30=750\)
=>\(5^x=25\)
=>x=2
e) \(2^x+2^{x+3}=144\)
\(=>2^x+2^x.2^3=144\)
\(=>2^x.\left(1+2^3\right)=144\)
\(=>2^x.9=144\)
\(=>2^x=144:9\)
\(=>2^x=16=2^4\)
\(=>x=4\)
__________
f) \(3^x+3^{x+1}=108\)
\(=>3^x+3^x.3=108\)
\(=>3^x.\left(1+3\right)=108\)
\(=>3^x.4=108\)
\(=>3^x=108:4\)
\(=>3^x=27=3^3\)
\(=>x=3\)
\(#Wendy.Dang\)
-2 . x3 = -108
x3 = -108 : (-2)
x3 = 54
x \(\in\varnothing\)
1, 4[3x + 4] = 12x + 16
2, 4/3[5/3x + 6] = 20/9x + 12
3, [4/3x + 7]. 5 + 2 = 20/3x + 35 + 2 = 20/3x + 37
4, [3/7x - 6][-7] + 3x = -3x + 42 + 3x = 42
3x+2+3x+3=108
3x . 32 + 3x . 33 = 108
3x . ( 32 + 33 ) = 108
3x . 36 =108
3x = 108 : 36
3x = 3
3x = 31
=> x = 1