Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân phân phối là ra thôi
a)
\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)
\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)
c) thay vì c/m A=B ta chứng Minh B=A
\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)
\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)
x+y+1=0 suy ra x+y=1
Làm câu A nhé B,C tương tự
A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1
Hok tốt
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)
b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)
\(=9-3-1+27\)
=36-4=32
c: \(C=-0.7xy^2-2x^2y-4.5xy\)
\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)
\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)
\(=\dfrac{12}{5}\)
Lời giải:
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=(x^3+x^2y-2x^2)-(xy+y^2-2y)+y+x-1\)
\(=x^2(x+y-2)-y(x+y-2)+(y+x-2)+1\)
\(=x^2.0-y.0+0+1=1\)
\(N=x^3-2x^2-xy^2+2xy+2y-2x-2\)
\(=(x^3-2x^2+x^2y)-(x^2y+xy^2-2xy)+2y+2x-4-4x+2\)
\(=x^2(x-2+y)-xy(x+y-2)+2(y+x-2)-4x+2\)
\(=x^2.0-xy.0+2.0-4x+2=2-4x\) (không tính được giá trị cụ thể, bạn thử xem lại đề)
\(P=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-x(x+y-2)\)
\(=x^3(x+y-2)+x^2y(x+y-2)-x(x+y-2)\)
\(=x^3.0+x^2y.0-x.0=0\)
Lời giải:
a)
$A=x^3+y^3+3xy(x^2+y^2)=(x+y)^3-3xy(x+y)+3xy[(x+y)^2-2xy]$
$=1^3-3xy.1+3xy(1-2xy)=1-6x^2y^2$
b)
$B=x^4+y^4+7xy(x^2+y^2)+12x^2y^2+x^3+y^3$
Ta có:
$x^2+y^2=(x+y)^2-2xy=1-2xy$
$x^3+y^3=(x+y)^3-3xy(x+y)=1-3xy$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=(1-2xy)^2-2x^2y^2=2x^2y^2-4xy+1$
Do đó:
$B=2x^2y^2-4xy+1+7xy(1-2xy)+12x^2y^2+1-3xy=2$