K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

(3x-y)3-2xy(2x+5y)  

=27x3-27x2y+9xy2-y3-4x2y-10xy2

=27x3-31x2y-xy2-y3

19 tháng 2 2018

a, A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(2x2-2x+2)+1

=(x-y)2+2(x-1)2+1

vì (x-y)2 ≥0 ∀x,y

(x-1)2 ≥ 0 ∀x

=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y

=> A ≥1

= > GTNN A = 1 khi

x-1=0

=> x=1

x-y=0

=> 1-y=0

=> y=1

vậy GTNN A =1 khi x=y=1

1 tháng 8 2020

a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)

\(=xy\left(2xy-\frac{4}{3}x+2\right)\)

b) 2xy2.(x + 5y) - 4xy(5y + x)

= (5y + x)(2xy2 - 4xy)

= 2xy(5y + x)(y - 2)

c) 25 - 4x2 - y2 + 4xy

= 25 - (4x2 - 4xy + y2)

= 52 - (2x + y)2

= (5 - 2x - y)(5 + 2x + y)

d) x2 + 4x - 2xy - 4y +y2

= (x2 - 2xy + y2) + (4x - 4y)

= (x - y)2 + 4(x - y)

= (x - y)(x - y + 4)

e) 12y3 - 3x2y + 12xy - 12y

= 3y(4y2 - x2 + 4x - 4)

= 3y[4y2 - (x - 2)2]

= 3y(2y - x + 2)(2y + x - 2)

f) 64x4 + y4

= (8x2)2 + 16x2y2 + y4 - 16x2y2

= (8x2 + y2)2 - (4xy)2

= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)

1 tháng 8 2020

a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)

b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)

\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)

\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)

c) \(25-4x^2-y^2+4xy\)

\(=25-\left(4x^2+y^2-4xy\right)\)

\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)

\(=5^2-\left(2x-y\right)^2\)

\(=\left(5-2x+y\right)\left(5+2x-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(12y^3-3x^2y+12xy-12y\)

f) \(64x^4+y^4\)

\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)

24 tháng 1 2020

\(b,D=x^2+xy+y^2-3x-3y\)

Ta có: \(D+3=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)\)

Đặt: \(\left\{{}\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)

Thì \(C+3=a^2+b^2+ab\ge0\left(\forall a,b\right)\)

\(\Rightarrow Min_C=-3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b\Leftrightarrow x=y=1\)

19 tháng 10 2016

a) 2x-5y+4y+2x

=4x+y

Tai x=3 y=-12 thi

4x3+(-12)=12-12=0

b)3x+4y-2x-3y

 

 

19 tháng 10 2016

b)3x+4y-2x-3y

=x+y

Tai x-2; y=-5 thi

2+(-5)=2-5=-3

 

23 tháng 11 2019

1.

\(3x^2-3xy+5x-5y\)

\(=\left(3x^2-3xy\right)+\left(5x-5y\right)\)

\(=3x.\left(x-y\right)+5.\left(x-y\right)\)

\(=\left(x-y\right).\left(3x+5\right)\)

2.

\(x^2+y^2+2xy-x-y\)

\(=\left(x^2+2xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)^2-\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y-1\right)\)

3.

\(x^2-xy+x-y\)

\(=\left(x^2-xy\right)+\left(x-y\right)\)

\(=x.\left(x-y\right)+\left(x-y\right)\)

\(=\left(x-y\right).\left(x+1\right)\)

4.

\(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left[x-y+\left(z-t\right)\right]\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

6.

\(2x^2-8x+6\)

\(=2.\left(x^2-4x+3\right)\)

\(=2.\left(x^2-3x-x+3\right)\)

\(=2.\left[\left(x^2-3x\right)-\left(x-3\right)\right]\)

\(=2.\left[x.\left(x-3\right)-\left(x-3\right)\right]\)

\(=2.\left(x-3\right).\left(x-1\right)\)

Chúc bạn học tốt!

13 tháng 9 2020

A = 2x2 + y2 - 2xy - 2y + 2000 = (x2 - 2xy + y2) + 2(x - y) + 1 + (x2 + 2x + 1) + 1998

= (x - y)2 + 2(x - y) + 1 + (x + 1)2 + 1998 = (x - y + 1)2 + (x + 1)2 1998 \(\ge\)1998 với mọi x,y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\x+1=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x+1\\z=-1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

Vậy MinA = 1998 khi x = -1 và y = .0

b) B = x2 + 5y2 - 2xy + 6x - 18y + 50 = (x2 - 2xy + y2) + 6(x - y) + 9 + (4y2 - 12y + 9) + 32

= (x - y)2 + 6(x - y) + 9 + (2y - 3)2 + 32 = (x - y + 3)2 + (2y - 3)2 + 32 \(\ge\)32 với mọi x,y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=y-3\\y=\frac{3}{2}\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy MinB = 32 khi x = -3/2 và y = 3/2

c) C = 3x2 +  x + 4 = 3(x2 + 1/3x + 1/36) + 47/12 = 3(x + 1/6)2 + 47/12 > = 47/12 với mọi x

Dấu "=" xảy ra <=> x + 1/6 = 0 <=> x = -1/6

Vậy MinC = 47/12 khi x = -1/6

13 tháng 9 2020

A = 2y2 + x2 - 2xy - 2y + 2000 ( vầy mới tính được bạn nhé ;-; )

= ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + 1999

= ( x - y )2 + ( y - 1 )2 + 1999

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-1\right)^2+1999\ge1999\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\Leftrightarrow x=y=1\)

=> MinA = 1999 <=> x = y = 1

B = x2 + 5y2 - 2xy + 6x - 18y + 50

= ( x2 - 2xy + y2 + 2x - 6y + 9 ) + ( 4y2 - 12y + 9 ) + 32

= [ ( x2 - 2xy + y2 ) + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32

= [ ( x - y )2 + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32

= ( x - y + 3 ) + ( 2y - 3 )2 + 32

\(\hept{\begin{cases}\left(x-y+3\right)^2\ge0\forall x,y\\\left(2y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y+3\right)^2+\left(2y-3\right)^2+32\ge32\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

=> MinB = 32 <=> x = -3/2 ; y = 3/2

C = 3x2 + x + 4

= 3( x2 + 1/3x + 1/36 ) + 47/12

= 3( x + 1/6 )2 + 47/12 ≥ 47/12 ∀ x

Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6

=> MinC = 47/12 <=> x = -1/6

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

19 tháng 11 2018

ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)

\(\Leftrightarrow\) cái đó

18 tháng 11 2018

@Akai Haruma, @Mysterious Person

27 tháng 10 2018

Bài 1: Thực hiện phép tính

a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)

b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)

c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)

2) Thực hiện phép tính

a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)

b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)

c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)

Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):

a) (x+y)2+(x-y)2

= \(x^2+2xy+y^2+x^2-2xy+y^2\)

= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

= \(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) (x+2)(x-2)-(x-3)(x+1)

= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)

= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)

c) (x-2)(x+2)-(x-2)2

=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)

d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)

= \(8x^3+y^3-\left(8x^3-y^3\right)\)

= \(8x^3+y^3-8x^3+y^3\)

= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)

6 tháng 9 2020

G = x2 - 3x + 5

= ( x2 - 3x + 9/4 ) + 11/4

= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinG = 11/4 <=> x = 3/2

H = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinH = 5 <=> x = 0

I = x2 - 2x + y2 - 4y + 10

= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 5

= ( x - 1 )2 + ( y - 2 )2 + 5 ≥ 5 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

=> MinI = 5 <=> x = 1 ; y = 2

K = x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2 ≥ 2 ∀ x, y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

=> MinK = 2 <=> x = y = -1/2

E = 2x2 + y2 + 2xy - 4x + 14

= ( x2 + 2xy + y2 ) + ( x2 - 4x + 4 ) + 10

= ( x + y )2 + ( x - 2 )2 + 10 ≥ 10 ∀ x, y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\end{cases}}\)

=> MinE = 10 <=> x = 2 ; y = -2