Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x^2-2\right)^2=\frac{196}{81}\)
<=> \(2^2\left(2x^2-1\right)^2=\frac{196}{81}\)
<=> \(4\left(2x^2-1\right)^2=\frac{196}{81}\)
<=> \(\left(2x^2-1\right)^2=\frac{196}{81}:4\)
<=> \(\left(2x^2-1\right)^2=\frac{49}{81}\)
<=> \(2x^2-1=\pm\sqrt{\frac{49}{81}}\)
<=> \(2x^2-1=\pm\frac{7}{9}\)
<=> \(\orbr{\begin{cases}2x^2-1=\frac{7}{9}\\2x^2-1=-\frac{7}{9}\end{cases}}\)<=> \(\orbr{\begin{cases}x=\pm\frac{2\sqrt{2}}{3}\\x=\pm\frac{1}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm\frac{2\sqrt{2}}{3}\\x=\pm\frac{1}{3}\end{cases}}\)
1) x (x-2016) + 2015 (2016-x) = 0
x (x-2016) - 2015 (x- 2016) = 0
(x-2015)(x-2016) =0
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015; 2016
2) -5x (x-15) + (15-x) = 0
-5x (x-15) - (x-15) =0
(-5x -1) (x-15) =0
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5; 15
3) 3x (3x-7) - (7-3x) =0
3x(3x-7) + (3x -7) =0
(3x+1) (3x-7) =0
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\3x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{7}{3}\end{cases}}}\)
Vậy x= -1/3 ; 7/3
\(x^{2018}+2x^{2017}+3x^{2016}+...+2017x+2018\)
\(=1+2+3+...+2017+2018\)
\(=\frac{2018.\left(2018+1\right)}{2}=2037171\)
\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
\(\Leftrightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)
\(\left(3x-7\right)^{2007}.\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\\left(3x-7\right)=\pm1\end{cases}}}\)
=> \(x=\frac{7}{3},x=2,x=\frac{8}{3}\)
Vậy ...
2/\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}=\frac{5^{100+2}.3^{2.1009}}{3^{2018}.5^{2.50}}=\frac{5^{100}.5^2.3^{2018}}{3^{2018}.5^{100}}=5^2=25\)
a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
=>16x-7=13x+2
=>3x=9
hay x=3
b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)
=>x+2017=0
hay x=-2017
e: \(\left(2x-3\right)^2=144\)
=>2x-3=12 hoặc 2x-3=-12
=>2x=15 hoặc 2x=-9
=>x=15/2 hoặc x=-9/2
\(Vi:\hept{\begin{cases}\left(3x-1\right)^{2016}\ge0\\\left(5y-3\right)^{2018}\ge0\end{cases}}ma:\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}\le0\Rightarrow\hept{\begin{cases}5y-3=0\\3x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{5}{3}\\x=\frac{1}{3}\end{cases}}.\)
\(\Rightarrow M=5^5+\frac{35}{9}\)
\(\left(3x-7\right)^{2018}=\left(3x-7\right)^{2016}\)
\(\Leftrightarrow\left(3x-7\right)^{2018}-\left(3x-7\right)^{2016}=0\)
\(\Leftrightarrow\left(3x-7\right)^{2016}\left[\left(3x-7\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-7\right)^{2016}=0\\\left(3x-7\right)^2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(3x-7\right)^{2016}=0\\\left(3x-7\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-7=0\\3x-7=1\\3x-7=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=7\\3x=8\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)