K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

3x - 3y + x2 - y2

= 3(x - y) + (x - y)(x + y)

= (x - y)(x + y + 3)

8 tháng 11 2020

\(3x-3y+x^2-y^2\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4 tháng 8 2015

P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y

         = ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)

         = ( x+  y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+  y)

         = ( x+  y)^3 - 3 ( x+ y)^2 + 3(x +y)

Thay x+  y = 101 ta có :

        = 101^3 - 3.101^2 + 3.101

         = 101 . ( 101^2 - 3.101 + 3 )

         = 101 .9901

        =  1000001

1000001

chắc chắn 100%

3 tháng 10 2018

Bài giải:

\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)

\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)

\(=101^3-3.101^2+3.101+2012\)

\(=101^3-3.101^2+3.101-1+2013\)

\(=100^3+2013=1002013\)

Tự kết luận nha bạn ^^

3 tháng 10 2018

<=>P=(x3+3x2y+3xy2+y3)+(-3x2-3y2)-6xy+(3x+3y)+2012

<=>P=(x+y)3-3(x2+y2)-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+6xy-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+3(x+y)+2012

<=>P=1013-3.1012+3.101+2012

=>P=1002013

27 tháng 6 2018

\(B=x^3-3x^2+3xy^2+3x^2y+y^3-3y^2-6xy+3x+3y+2012\\ =\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\\ =\left[\left(x+y\right)^3-3\left(x+y\right)^3+3\left(x+y\right)-1\right]+2013\\ =\left(x+y-1\right)^3+2013\)thay x+y=101 vào ta có

\(B=\left(101-1\right)^3+2013=1002013\)

\(P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2017\)

\(=\left(x+y-1\right)^3+2018\)

\(=100^3+2018\)

27 tháng 12 2017

a, \(x^2\) + 6x + 5 = 0
=>\(x^2\) + x + 5x +5 = 0
=>x(x + 1) + 5(x + 1) = 0
=>(x + 1)(x + 5) = 0
=> x + 1 =0 hoặc x + 5 =0
=> x = -1 hoặc x = -5

27 tháng 12 2017

c) \(\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}+\dfrac{14-3x}{1-x}\)

\(=\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}-\dfrac{14-3x}{x-1}\)

\(=\dfrac{x+3+2x+5-14+3x}{x-1}\)

\(=\dfrac{6x-6}{x-1}\)

\(=\dfrac{6\left(x-1\right)}{x-1}\)

\(=6.\)

21 tháng 11 2017

\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)

21 tháng 11 2017

\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)

\(\Leftrightarrow P=x^3+3x^2y+3xy^2+y^3-3x^2-6xy-3y^2+3x+3y+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)

\(\Leftrightarrow P=1030301-30603+303+2015\)

\(\Leftrightarrow P=999698+303+2015\)

\(\Leftrightarrow P=1000001+2015\)

\(\Leftrightarrow P=1002016\)

14 tháng 7 2016

a)x3 + 3x2 + 3x

=x3 + 3x2 + 3x+1-1

=(x+1)3-1.Với x=99

=>A=(99+1)3-1=1003-1

=1 000 000 -1 = 999 999

a: \(A=x^3+3x^2+3x+1-1\)

\(=\left(x+1\right)^3-1\)

\(=100^3-1=999999\)

b: \(B=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)

\(=3-6xy-2+6xy=1\)

c: \(C=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2017\)

\(=101^3-3\cdot101^2+3\cdot101+2017\)

\(=101^3-3\cdot101^2+3\cdot101-1+2018\)

\(=100^3+2018=1002018\)

21 tháng 10 2017

a, ( x-y)2=4

21 tháng 10 2017

3x^2 +3y^2 -6xy -12

=3(x^2 - 2xy +y^2 - 2^2  )

=3 (x-y)^2 - 2^2 

=3(x-y-2)(x-y+2)

3(x+y) -(x^2+2xy+y^2)

=3(x+y) -(x+y)^2 

(x+y)(3-x-y)