Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
a) \(x\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).
b) \(\left(x-2020\right)\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).
c) \(\left(x-2021\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).
d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Xét tổng: \(A=1+3+5+...+99\)
Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).
Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow x=-50\).
Bạn Đúc giúp người kiểu giì đấy :))) , giúp mà không giúp hết à ???
a) 2x + 2020 2021
=> 2x = 2021 - 2020
=> 2x = 1
=> 2x = 20
=> x = 0
b) Ta có :
4x + 14 ⋮ x + 2
=> 4. ( x + 2 ) + 6 ⋮ x + 2
Mà 4 . ( x + 2 ) ⋮ x + 2
=> 6 ⋮ x + 2 => x + 2 ∈ { 1 ; 2 ; 3 ;6 }
=> x ∈ { 0 ; 1 ; 4 } ( do x ∈ N )
c) ( x - 3 )2021 - ( x - 3 )5 = 0
=> ( x - 3 )5 . [ ( 2 - 3 )2016 - 1 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^5=0\\\left(x-3\right)^{2016}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{2016}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x-3\in=\left\{-1;1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x\in=\left\{2;4\right\}\end{cases}}\)
a) 2x = 2021 - 2020
2x = 1
\(\Rightarrow\)2x = 10
\(\Rightarrow\)x = 0
a) x-28:7=16
x-4=16
x=16+4
x=20
Vậy x=20
b)3x-63=930:928
3(x-21)=81
x-21=27
x=21+27
x=48
Vậy x=48
a, x-28:7=16
x-4=16
x=16+4
x=20
b, 3x-63=9^30:9^28
3x-63=9^2
3x-63=81
3x=81+63
3x=144
x=144:3
x=48
Ta có : \(\left(2020.x^2+2021\right).\left(x^2-1\right).\left(2.x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2020.x^2+2021=0\\x^2-1=0\\2.x+=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\notinℝ\\x=\pm1\\x=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x=\left\{\pm1;-\frac{1}{2}\right\}\)
3x+2021^0=28
3x+1=28
3x=27
x=9
Good luck!
3x + 20210 = 28
3x + 1 = 28
3x = 28 - 1
3x = 27
x = 27 : 3
x = 9