K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TL
23 tháng 3 2018
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
LT
2
7 tháng 2 2017
a,ta co
|x+4|+|y-2|=3
=>|x+4|=3=>x+4=3=>x=-1
=>|y-2|=3=>y-2=3=>y=5
b,|2x+1|+|y-1|=4
=>|2x+1|=4=>2x+1=4=>2x=-3=>x=-3/2
=>|y-1|=4=>y-1=4=>y=5
c,|3x|+|y+5|=5
=>|3x|=5=>3x=5=>x=5/3
=>|y+5|=5=>y+5=5=>y=0
c,
ND
0
NV
0
Trường hợp $1$
\(\left\{{}\begin{matrix}3x-1=1\\2y+1=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\left(\text{loại}\right)\)
Trường hợp $2$
\(\left\{{}\begin{matrix}3x-1=4\\2y+1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=0\end{matrix}\right.\left(\text{loại}\right)\)
Trường hợp $3$
\(\left\{{}\begin{matrix}3x-1=2\\2y+1=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\left(\text{loại}\right)\)
Xét x nguyên ta có:
x nguyên -> 3x nguyên -> 3x - 1 nguyên
y nguyên -> 2y nguyên -> 2y + 1 nguyên
Vậy 3x - 1 và 2y + 1 là các số nguyên sao cho chúng là ước của 4.
Suy ra \(\left(3x-1\right)\inƯ\left(4\right)\Rightarrow\left(3x-1\right)\in\left\{1;-1;4;-4\right\}\)
Ta có bảng sau:
Vậy x = -1; y = -1