K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

ta có:

\(3^{x-1}2^{x^2}0\Leftrightarrow x^2-x\left(2-\log_23\right)+1-log_23>0\)

x>1 hoặc x<\(\log_23-1\)

 

18 tháng 10 2015

cho mình hỏi cái này làm sao vậy?

\(3^{x-1}3^{1-x}\)

30 tháng 3 2016

vd câu 1:
ta có x-y=4 =>x=4+y
ta có pt:
4+y/y-2=3/2
=>8+2y=3y-6
=>-y=-14
=>y=14
=>x=4+y=4+14=18
các bài khác cũng tương tự thôi bạn

30 tháng 3 2016

dấu chéo có nghĩa là phân số híhehe

26 tháng 3 2016

Bạn A là đúng

26 tháng 3 2016

Bạn A giải đúng nhé vì phải thực hiện phép tính trong ngoặc trước cũng như từ phải sang trái .

24 tháng 4 2016

a) A(x)= 5x^4-1/3x^3-x^2-2

B(x)= -3/4x^3-x^2+4x+2

b) A(x)+B(x)=17/4x^3-1/3x^3-2x^2+4x

                    =47/12x^3-2x^2+4x

c) thay x= 1 vao đt A(x)+B(x) ta có:

A(x)+B(x)=47/12*1^3-2*1^2+4*1

                =71/12

Vậy x = 1 ko phai là nghiệm của đt A(x)+B(x)

nếu tính toán ko sai thì chắc như thếucche

4 tháng 10 2015

đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)

ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)

giải pt tìm ra x

đối chiếu với đk của bài ta suy ra đc nghiệm của pt

26 tháng 4 2016

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{5}{6}\) -\(\frac{3}{4}\) + \(\frac{2}{3}\) -\(\frac{1}{2}\)

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{10}{12}\)-\(\frac{9}{12}\)+\(\frac{8}{12}\)-\(\frac{6}{12}\)

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\)\(\frac{1}{4}\)=> x. (\(\frac{1}{2}\)\(\frac{2}{3}\) + \(\frac{3}{4}\)\(\frac{5}{6}\)) = \(\frac{1}{4}\)=> x.( \(\frac{6}{12}\)\(\frac{8}{12}\)+\(\frac{9}{12}\)-\(\frac{10}{12}\))= \(\frac{1}{4}\)=> x. \(\frac{-1}{4}\)=\(\frac{1}{4}\)=> x = \(\frac{1}{4}\)\(\frac{-1}{4}\)=> x = -1
26 tháng 4 2016

=>x.(1/2-2/3+3/4)=1/4

=>x.7/12=1/4

=>x=1/4:7/12

=>x=1/4.12/7

=>x=3/7

 

24 tháng 1 2016

?

24 tháng 1 2016

khó

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)