Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
\(\Leftrightarrow cos2x-\sqrt{3}sin2x=1\)
\(\Leftrightarrow\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow2x+\dfrac{\pi}{3}=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
2.
\(10cos^2x-5sinx.cosx+3sin^2x=4\)
\(\Leftrightarrow20cos^2x-10sinx.cosx+6sin^2x=8\)
\(\Leftrightarrow20cos^2x-10-10sinx.cosx+6sin^2x-3=-5\)
\(\Leftrightarrow7cos2x-5sin2x=-5\)
\(\Leftrightarrow\sqrt{74}\left(\dfrac{7}{\sqrt{74}}cos2x-\dfrac{5}{\sqrt{74}}sin2x\right)=-5\)
\(\Leftrightarrow cos\left(2x+arccos\dfrac{7}{\sqrt{74}}\right)=-\dfrac{5}{\sqrt{74}}\)
\(\Leftrightarrow2x+arccos\dfrac{7}{\sqrt{74}}=\pm arccos\dfrac{5}{\sqrt{74}}+k2\pi\)
\(\Leftrightarrow x=-\dfrac{1}{2}arccos\dfrac{7}{\sqrt{74}}\pm\dfrac{1}{2}arccos\dfrac{5}{\sqrt{74}}+k\pi\)
7.
Hàm có đúng 1 điểm gián đoạn khi và chỉ khi \(x^2-2\left(m+2\right)x+4=0\) có đúng 1 nghiệm
\(\Rightarrow\Delta'=\left(m+2\right)^2-4=0\)
\(\Leftrightarrow m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=0\end{matrix}\right.\)
\(-4+0=-4\)
8.
Hàm gián đoạn khi \(x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Nên hàm đồng biến trên các khoảng \(\left(-\infty;-3\right);\left(-3;1\right);\left(1;+\infty\right)\) và các tập con của chúng
A đúng
3.
\(4sinx+cosx+2cos\left(x+\dfrac{\pi}{3}\right)=2\)
\(\Leftrightarrow4sinx+cosx+cosx-\sqrt{3}sinx=2\)
\(\Leftrightarrow\left(4-\sqrt{3}\right)sinx+2cosx=2\)
\(\Leftrightarrow\sqrt{23-4\sqrt{3}}\left(\dfrac{4-\sqrt{3}}{\sqrt{23-4\sqrt{3}}}sinx+\dfrac{2}{\sqrt{23-4\sqrt{3}}}cosx\right)=2\)
\(\Leftrightarrow cos\left(x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}\right)=\dfrac{2}{\sqrt{23-4\sqrt{3}}}\)
\(\Leftrightarrow x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}=\pm arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)
4.
\(sinx+2cos\left(x+\dfrac{\pi}{3}\right)+4sin\left(x+\dfrac{\pi}{6}\right)+cosx=4\)
\(\Leftrightarrow sinx+cosx-\sqrt{3}sinx+2\sqrt{3}sinx+2cosx+cosx=4\)
\(\Leftrightarrow\left(1+\sqrt{3}\right)sinx+4cosx=4\)
\(\Leftrightarrow\sqrt{20+2\sqrt{3}}\left(\dfrac{1+\sqrt{3}}{\sqrt{20+2\sqrt{3}}}sinx+\dfrac{4}{\sqrt{20+2\sqrt{3}}}cosx\right)=4\)
\(\Leftrightarrow cos\left(x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}\right)=\dfrac{4}{\sqrt{20+2\sqrt{3}}}\)
\(\Leftrightarrow x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}=\pm arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)
\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)
\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)
Câu5:
Gọi 4 chữ số đc lập lần lượt là a,b,c,d các số chia hết cho 2 thì d phải thuộc 0;2;6
TH1: d=0 -> d có 1 cách chọn, a có 6 cách chọn, b có 5 cách chọn , c có 4 cách chọn a×b×c×d= 6×5×4×1=120
TH2 : d là 2 hoặc 6 -> d có 2 cách chọn , a có 5 cách chọn( trừ số 0) , b có 5 cách chọn, c có 4 cách chọn. a×b×c×d= 5×5×4×2=200
Th1+ TH2 = 120+200=320
Đáp án c
Câu 6 : có 4! Cách lập
4! = 24
Đáp án d
Câu 7 :
Theo nhị thức Newton thì chỉ cần nhìn vào 2 số đầu và cuối
(a+b)⁵ thì a=⁵√243x⁵ = 3x b =⁵√-1=-1 => (3x-1)⁵ đáp án D
Câu 8: chia làm 2 trường hợp 2 nữa 1 nam hoặc 2 nam 1 nữ.
Đáp án C
5.
\(AA'\perp\left(A'B'C'D'\right)\) theo t/c lập phương
\(\Rightarrow AA'\perp B'C'\Rightarrow\) góc giữa 2 đường thẳng bằng 90 độ
6.
\(y'=\left(x.cosx\right)'=x'.cosx+\left(cosx\right)'.x=cosx-x.sinx\)
7.
\(y'=-3x^2-5\)
\(y''=-6x\)
8.
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+3x-2\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{3}{x}-\dfrac{2}{x^3}\right)=+\infty.1=+\infty\)
\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)
\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)
\(\Leftrightarrow q^3+2q^2+3q+6=0\)
\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)
\(\Leftrightarrow q=-\text{}2\)
\(\Rightarrow u_1=\dfrac{1}{4}\)
\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)